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Abstract

We address the issue of parameter dimensionality reduction in Vector Autoregres-

sive models (VARs) for many variables by imposing reduced rank restrictions on the

coeffi cient matrices. We derive the Wold representation implied by reduced rank VARs

(RR-VARs) and show that it is closely related to that associated with dynamic factor

models. Next we describe classical and Bayesian estimation of large RR-VARs, and il-

lustrate how the estimated models can be used for structural analysis. The performance

of the RR-VARs is then compared with that of factor models and classical and Bayesian

VARs by means of a set of simulation experiments. Finally, a similar comparison is

conducted in the context of an empirical application on the transmission mechanism of

monetary policy.
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1 Introduction

The recent theoretical and applied econometric literature has paid substantial attention to

modelling in the presence of datasets with a large cross-sectional and temporal dimension.

The two main approaches are factor models and Vector Autoregressive models (VARs). Both

approaches started in a small dataset context, and typically relied on Bayesian methods

to overcome the curse of dimensionality problem (Geweke (1977), Doan et al. (1984)).

However, classical methods quickly replaced the Bayesian ones, see e.g. Stock and Watson

(1989) in the factor context and the large literature on structural VARs.

Classical method were also used in the early large datasets developments of factor tech-

niques, often combined with non-parametric procedures for factor estimation, see e.g. Stock

and Watson (2002a, 2002b), Forni et al. (2000). Parametric and sometimes Bayesian ap-

proaches emerged later, in the structural factor augmented VAR (FAVAR) literature, in

particular in particular to allow for parameter time variation, e.g. Kose et al. (2003),

Del Negro and Otrok (2008), Baumeister and Mumtaz (2010), but also Eickmeier, Lemke,

Marcellino (2010).

More recently, large Bayesian VARs (BVARs) were proposed as an alternative modelling

device to factor models, e.g. Doz, Giannone and Reichlin (2006) and Banbura, Giannone,

Reichlin (2010). Large classical VARs are not feasible, unless constraints are imposed in

order to substantially reduce the number of free parameters, see e.g., Carriero, Kapetanios,

Marcellino (2011)).

Both FAVARs and BVARs have pros and cons. The FAVARs nicely capture the idea of

few key shocks or variables as drivers of the entire economy. However, they often rely on

a two-step approach (estimate factors, then treat them as known in subsequent analyses),

though full Kalman filter based estimation has been also developed, see e.g. Doz, Giannone

and Reichlin (2011)). In both cases, the number of variables, N , must diverge in order to

get consistent factor estimators, and the speed of divergence must be faster than that of

the temporal dimension, T , in order to avoid generated regressors problems in subsequent

analyses, see e.g. Bai and Ng (2006a). Moreover, it is unclear why the factors are modelled as

a VAR in FAVARs, in particular when they are estimated as the static or dynamic principal

components of the variables, e.g., Dufour and Stevanovic (2010) demonstrate that a VARMA

representation is more appropriate, though more complex. And structural identification is

in principle rather easy but in practice often complex, so that few empirical applications

have been produced. Moreover, testing hypotheses on the factors, e.g. whether they are

equal to specific macroeconomic or financial variables, is quite complex, see Bai and Ng

(2006b).

The BVARs are overall easier to handle than FAVARs in terms of (Bayesian) estimation

1



and inference. However, estimation remains computationally demanding due to the curse

of dimensionality, and the fact of having one shock for each variable, each of them equally

important, is not so attractive from an economic point of view.

Hence, in this paper we suggest to use a model that bridges BVARs and FAVARs. Specif-

ically, we propose to impose reduced rank restrictions in a BVAR that, as we will see, makes

it similar to a factor model in terms of having a smaller set of key shocks or variables, but

preserves the attractive features of a BVAR, substantially reducing its parameter dimension-

ality. Reduced rank BVARs (RR-BVARs) have been previously considered in the literature,

see e.g. Geweke (1996) and Carriero et al. (2011) in a small and large datasets context,

respectively, but not for structural analysis. Hence, our main contribution is to show how an

RR-BVAR can be used to compute the response functions to structural shocks, for which we

introduce and study the properties of (both classical and Bayesian) methods for estimation,

inference and rank determination.

In Section 2 we derive alternative moving average representations for RR-BVARs, dis-

cussing their relative merits. More specifically, we show that in an RR-BVAR each variable

is driven by a limited number of specific linear combinations of the other variables, say r,

with r much smaller than N . Since these combinations are the counterpart of the factors

in the factor literature, we also refer to them as "factors". We also show that these fac-

tors admit an exact VAR representation, whose coeffi cients can be analytically derived from

those of the RR-BVAR. It is then possible to have moving average representations of the

RR-BVAR where each variable is driven either by the N original RR-BVAR (1-step ahead

forecast) errors, or by the r errors in the VAR for the factors (common to all variables) plus

N − r other errors, orthogonal to the factor errors. The former representation is similar to
the one used in the BVAR literature, the latter to the one used in the FAVAR literature.

We do not prefer either representation, we suggest to use the one that is more suited to

address the specific empirical problem under analysis.

In Section 3 we introduce classical and Bayesian estimation methods for the RR-BVAR.

The classical method mostly relies on Reinsel (1983), see also Velu, Reinsel and Wichern

(1986) and Reinsel and Velu (1998). Our main original contribution is to show that this

technique can be also implemented when N diverges, under some regularity conditions.

In the Bayesian context, we derive the conditional distributions of the parameters under

standard assumptions on the priors, and provide a new MCMC algorithm to handle the

model non-linearity.

In Section 4 we discuss classical and Bayesian methods for the determination of the rank

r of the RR-BVAR. In a classical context, rank determination can be determined either by

information criteria or by sequential testing methods. We briefly review them and discuss

their applicability in a large N context. In a Bayesian framework, we propose to select the
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rank associated with the highest data density, which also corresponds to maximum of the

posterior density of r, assuming a flat prior. We suggest to approximate the marginal data

density numerically by using Geweke’s (1999) modified harmonic mean estimator.

In Section 5 we assess the performance in finite samples of the classical and Bayesian

procedures for estimation and rank determination, and compare the performance of the

RR-BVAR with that of a FAVAR.

In Section 6 we illustrate the theoretical proposals by means of two empirical applica-

tions. First, we replicate in the RR-BVAR context the BVAR analysis of the transmission of

US monetary policy shocks conducted by Banbura, Giannone and Reichlin (2010). We use

the N -shock MA representation of the RR-BVAR and obtain both classical and Bayesian

responses that are economic sensible and similar to those of Banbura et al. (2010). The

Bayesian procedure produces though more accurate estimates than the classical ones. Sec-

ond, we assess the effects of demand, supply, and financial / monetary shocks. In this case

we use the FAVAR-style MA representation of the RR-BVAR and assume that the factors

reflect movements in slow, fast and price variables, where the shocks associated with the

slow, fast and price factors are interpreted as, respectively, demand, financial / monetary

and supply shocks. Again, the resulting responses are very sensible from an economic point

of view. In addition, the responses to the monetary shock resulting from the two exercises

are very similar.

Finally, in Section 7 we summarize the main results of the paper and propose directions

for additional research in this area.

2 Specification

2.1 The RR-VAR

Consider the following representation for the N -dimensional weakly stationary process Yt =

(y1,t, y2,t, ..., yN,t)
′:

Yt = Φ(L)Yt + εt, (1)

where Φ(L) = Φ1L+ ....+ ΦpL
p is a polynomial of order p and εt are i.i.d. N(0,Σ).

We assume that Φ(L) can be factorised as Φ(L) = A(L)B(L), where A(L) = A1L+ ....+

Ap1L
p1 and each Ai is of dimension N × r, and B(L) = B0 +B1L+ ....+Bp2L

p2 and each

Bi is of dimension r ×N , with p1 + p2 = p, p1 ≥ 1, p2 ≥ 0. We obtain

Yt = A(L)B(L)Yt + εt =

p1∑
u=1

p2∑
v=0

AuBvYt−u−v + εt (2)

If r is much smaller than N there are much fewer parameters in the RR-VAR in (2)
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than in the corresponding unrestricted VAR in (1). For example, if N = 50, p = 2 and

r = 2, there are N(Np− r(p+ 1)) = 4700 parameters less in the reduced rank VAR than in

the corresponding unrestricted VAR, the total number of parameters in (1) and (2) being,

respectively, N2p = 5000 and Nr(p+ 1) = 300.

The moving average representation associated with (2) is

Yt = (I −A(L)B(L))−1εt, (3)

and starting from this expression it is easy to derive optimal forecasts and impulse response

functions by using standard techniques.

2.2 RR-VAR and factor models

Let us now consider the relationship between the RR-VAR and the factor model. The

r-dimensional vector of variables:

Ft = B(L)Yt = B0Yt +B1Yt−1 + ....+Bp2Yt−p2 (4)

can be interpreted as a set of r factors common to all the variables under analysis. Indeed

the model in (2) can be re-written again as:

Yt = A(L)Ft + εt =

p1∑
u=1

AuFt−u + εt, (5)

which shows that as long as a rank reduction can be imposed on the VAR in (1), then it

can be written as a factor model as in (5).

A further simplification is obtained by setting p2 = 0. In this case (2) reduces to:

Yt = A(L)B0Yt + εt =

p∑
u=1

AuB0Yt−u + εt, (6)

and (4) simplifies to Ft = B0Yt. Here B0 is assumed to have full rank r. As in the case of

the factor model, the "loadings" Au and the factor weights B0 are not uniquely identified

in an RR-VAR. Without any loss of generality, we will assume that B0 = (Ir, B̃0). The

number of parameters to be estimated in (6) is then Nrp+r(N −r), while (1) contains N2p

parameters.1

An important characteristic of (6) is that the resulting linear combinations Ft = B0Yt

have a closed form V AR(p) representation, while in general when Yt follows an unrestricted

1Another particular case of interest is when p1 = 1, p2 = p − 1. The resulting model is that studied by
Geweke (1996) in a small N context and by Carriero et al. (2011) in a large N context.
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V AR linear combinations of Yt are complicated V ARMA processes, see e.g. Lutkepohl

(2007). To see this, it is suffi cient to pre-multiply by B0 both sides of equation (6) and use

Ft = B0Yt to get:

Ft = B0

p∑
u=1

AuFt−u +B0εt = C(L)Ft + ut (7)

with C(L) = B0A(L) = B0A1L + B0A2L
2 + .... + B0ApL

p and ut = B0εt is i.i.d. N(0,Ω)

with Ω = B0ΣB
′
0.

We can then group together (6) and (7) to form the system{
Yt = A(L)Ft + εt = A1Ft−1 +A2Ft−2 + ...+ApFt−p + εt

Ft = C(L)Ft + ut = C1Ft−1 + C2Ft−2 + ...+ CpFt−p + ut
(8)

It is now evident that if we want Yt to be decomposed into a common and a fully idiosyncratic

component, we need to restrict the variance covariance matrix of εt, Σ, to be either diagonal

(corresponding to the exact factor model case) or anyway with only a limited amount of

non-zero covariances (as in an approximate factor model). Instead orthogonality between

A(L)Ft and εt is guaranteed by the assumption of independence of εt.

The moving average representation associated with (8) is:

Yt = (A(L)
[
(I −B0A(L))−1

]
B0 + I)εt. (9)

This expression is obtained by inserting the moving average representation for Ft, which is

Ft = (I − C(L))−1ut = (I −B0A(L))−1B0εt (10)

into the equation for Yt in (8).

At this point we have two alternative moving average representations for Yt, (3) and (9),

and we can easily show that, naturally, they are equivalent when p2 = 0, namely2

(I −A(L)B0)
−1 = A(L)

[
(I −B0A(L))−1

]
B0 + I. (11)

2 In fact, we have:

A(L)−1 = B0 + [I −B0A(L)]A(L)−1

[I −B0A(L)]−1A(L)−1 = [I −B0A(L)]−1B0 +A(L)−1

using:

[I −B0A(L)]−1A(L)−1 = [A(L)(I −B0A(L))]−1 = [(I −A(L)B0)A(L)]−1 = A(L)−1(I −A(L)B0)−1

we get:
A(L)−1(I −A(L)B0)−1 = [I −B0A(L)]−1B0 +A(L)−1

and (11) is obtained by multiplying by A(L).
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A third moving average representation is particularly convenient for structural analysis.

Let us introduce the (N − r) × N full raw rank matrix B0⊥ that is orthogonal to B0, i.e.

B0B
′
0⊥ = 0, such that the rank of (B′0, B

′
0⊥) is N . Note that B0B′0 has full rank (as we

assumed B0 has full rank) and we have the following decomposition (see Johansen (1995,

p.39) for a similar decomposition)):

B′0(B0B
′
0)
−1B0 +B′0⊥(B0⊥B

′
0⊥)−1B0⊥ = IN . (12)

This key identity can now be inserted into the Wold representation in (9) to yield:

Yt = (A(L)
[
(I −B0A(L))−1

]
B0 + (B′0(B0B

′
0)
−1B0 +B′0⊥(B0⊥B

′
0⊥)−1B0⊥))εt

= (B′0(B0B
′
0)
−1 +A(L)

[
(I −B0A(L))−1

]
)B0εt +B′0⊥(B0⊥B

′
0⊥)−1B0⊥εt,

and, since B0εt = ut, we have:

Yt = (B′0(B0B
′
0)
−1 +A(L)

[
(I −B0A(L))−1

]
)ut +B′0⊥(B0⊥B

′
0⊥)−1B0⊥εt. (13)

The representation in (13) shows that each element of Yt is driven by a set of r common

errors, the ut that are the drivers of the factors Ft, and by an element of B0⊥εt, where ut−i

and B0⊥εt are orthogonal for each i ≥ 0.

The recovery of the structural shocks vt driving Ft starting from the reduced form errors

ut can be achieved using any technique adopted in the structural VAR and structural FAVAR

literatures, see e.g. Bernanke et al. (2005) or Eickmeier et al. (2011). For example, the

simplest option is the Choleski decomposition Ω = P−1SP−1
′
, where P is a lower triangular

matrix and S is a diagonal matrix containing the variances of the structural shocks. Hence,

vt = Put. (14)

Combining the previous equation with (13) yields

Yt = (B′0(B0B
′
0)
−1 +A(L)

[
(I −B0A(L))−1

]
)P−1vt +B′0⊥(B0⊥B

′
0⊥)B0⊥εt (15)

from which impulse response functions can be easily computed.

Note that, since ut = B0εt, the structural shocks are also related to the εt errors in the

Wold representations in (3) or (9), via the relationship vt = Put = PB0εt. However, from

a structural point of view, there is an important difference between the representations in

(3) or (9) and that in (13). In the former case there can be as many structural shocks

as variables, namely N , while in (13) we are explicitly assuming that there is a reduced

number of structural shocks, r, which drive all the factors Ft = B0Yt, which in turn drive
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the common components of all the variables in Yt. In principle there could be other N − r
structural shocks that drive the (N − r) errors B0⊥εt in (13), but in practice these are never
considered in the factor literature.

There is a case where shocking the factors or shocking the variables produces the same

responses and this is, perhaps not surprisingly, when the factors are equal to a subset of the

variables and we shock one of the variables in this subset. Formally, suppose that B̃0 = 0

in B0 = (Ir, B̃0), so that B0⊥ = (0, IN−r), and split Yt into the first r variables Y1t = Ft

and the remaining N − r variables Y2t. Similarly, εt is split into ε1t and ε2t, where ε1t and
ε2t are orthogonal. Then, the model for the factors becomes

Y1t = C(L)Y1t + ut = C1Y1t−1 + C2Y1t−2 + ...+ CpY1t−p + ε1t,

which also coincides with the first r equations (those for Y1t) in the model for Yt:

Yt = A(L)Y1t + εt = A1Y1t−1 +A2Y1t−2 + ...+ApY1t−p + εt,

and in addition ε1t and ε2t are orthogonal. Hence, identifying the shocks in the model for

the factors or in the full system for the variables is equivalent.

To conclude, the equations (8) and (13) highlight that the RR-VAR is similar to the

generalized dynamic factor model of Stock and Watson (2002a, 2002b) and Forni et al.

(2000), and even more to the parametric versions of these models later adopted in the

structural Factor augmented VAR (FAVAR) literature, e.g. Bernanke et al. (2005) and

Doz et al. (2011). The similarities increase when the unobservable factors are estimated

by static principal components, since in this case the estimated factors end up being linear

combinations of the variables, exactly like the elements of Ft. However, there are also

possibly important differences between RR-VAR and factor models. In particular, in the

factor literature the factors are unobservable and can be consistently estimated only when

N diverges. As we will see in the next section, within an RR-VAR context it is possible

to consistently estimate the "factors" Ft even when N is finite. Moreover, testing specific

hypotheses on the "factors" Ft, such as equality of one factor to a specific economic variable,

is much simpler in the RR-VAR context (restrictions on B) than in a factor context (see Bai

and Ng (2006b)). Next, in general factors estimated by principal components do not admit

an exact VAR representation (see Dufour and Stevanovic (2010), while from (8) this is the

case within the RR-VAR context. Finally, in the factor literature precise conditions have

to be imposed on the idiosyncratic components of each variable, to make sure that it is not

confounded with the common part, and on the factor loadings, to make sure that the factors

affect almost all variables (see e.g. Stock and Watson (2002a, 2002b)). In our context these

conditions would impose constraints on the variance covariance matrix of B0⊥εt in (13),
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and on A(L) in (8). However, no constraints are needed to obtain consistent parameter

estimators for the RR-VAR model, as we will see in the next Section. Given all this, with

respect to the factor approach, the RR-VAR seems to provide an easier, less constrained

and theoretically more consistent framework for parametric modelling of large datasets.

3 Estimation

For estimation it is convenient to compactly rewrite (6) as in Reinsel (1983):

Yt = AZt−1 + εt, (16)

where Z ′t−1 = (F ′t−1..., F
′
t−p) = (Y

′
t−1B

′
0,..., Y

′
t−pB

′
0,) = (Y

′
t−1,..., Y

′
t−p)(Ip ⊗ B

′
0) and A =

(A1, ..., Ap). As for all js, AjB0 = AjQ
−1QB0 for any nonsingular matrix Q we add the iden-

tification restriction B0 = (Ir, B̃0). Defining Y = (Y1, ..., YT )′ and Z = (Z0, Z1, ..., ZT−1)
′

and E = (ε1, ..., εT )′, stacking the equations in (16) for t = 1, ..., T we have

Y = ZA+ E, (17)

where V AR(E) = (IT ⊗ Σ).

3.1 Estimation via Maximum Likelihood

Reinsel (1983) studied classical estimation of the model in (16) via Maximum Likelihood.

In particular, he showed that ML estimates can be obtained by iterating over the first order

conditions on the maximization problem. The likelihood function is:

−0.5T log |Ω| − 0.5ΣTt=1(Yt −AZt−1)′Ω−1(Yt −AZt−1) (18)

For any A and B̃0 the maximization with respect to Ω yields:

Ω̂ = (Y − ZA′)′(Y − ZA′)/T (19)

The partial derivatives with respect to A (given B̃0 and Ω) can be obtained by noting that:

AZt−1 = vec(Z ′t−1A
′) = (IN ⊗ Z ′t−1)vec(A′) (20)

and the corresponding first order conditions are given by:

∂l

∂vec(A′)
= ΣTt=1(IN ⊗ Zt−1)′Ω−1(IN ⊗ Zt−1) = 0 (21)
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The partial derivatives with respect to B̃0 (given A and Ω) can be obtained by noting that:

AZt−1 = Σpt=1AjY1,t−j + Σpt=1(Aj ⊗ Y ′2,t−1)vec(B̃0), (22)

and the corresponding first order conditions are given by:

∂l

∂vec(B̃0)
= ΣTt=1Ut−1A

′Ω−1{Yt − (IN ⊗ Z ′t−1)α} = 0 (23)

where Ut−1 = (Ir ⊗ Y2,t−1, ..., Ir ⊗ Y2,t−p) and Y
′
2,t comes from partitioning Y

′
t in the first r

and last N − r components: Y ′t = (Y
′
1,t, Y

′
2,t).

Reinsel suggested to solve in turn equations (19), (21) and (23) until convergence is

achieved, and established consistency and asymptotic normality of this estimator. Of course

these consistency and asymptotic normality results can be coupled with the standard impulse

reponse analysis for finite dimensional VAR models to produce standard errors for such

impulse responses (see, e.g., Section 3.7 of Lutkerpohl (2007)).

To conclude, it is worth noting that specific hypotheses on the parameters, and in par-

ticular on B0, can be tested using likelihood ratio statistics.

3.2 Estimation via Markov Chain Monte Carlo

In this subsection we derive the conditional distributions and provide a new MCMC algo-

rithm for the estimation of the model in (16)

The model contains three sets of parameters, contained respectively in the matrices A,

B̃0, and Σ. The joint posterior distribution p(A, B̃0,Σ|Y ) has not a known form, but it can

be simulated by drawing in turn from the conditional posterior distributions p(A|B̃0,Σ, Y ),

p(B̃0|A,Σ, Y ), and p(Σ|A, B̃0, Y ).

Deriving the conditional posteriors of A and Σ is straightforward. Under the knowledge

of B̃0 and Y the variable Zt−1 is known, and (16) constitutes a simple multivariate regression

model. Under a Normal-Inverse Wishart prior for A and Σ :

A|Σ ∼ N(A0,Σ⊗ Ω0), Σ ∼ IW (S0, v0), (24)

the model features the following conditional posterior distributions:

A|Σ, B̃0, Y ∼ N(Ā,Σ⊗ Ω̄), Σ|B̃0, Y ∼ IW (S̄, v̄). (25)
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where:

Ā = Ω̄(Σ−10 Φ0 + Z ′Y ) (26)

Ω̄ = (Σ−10 + Z ′Z)−1 (27)

S̄ = Ê′Ê − (A0 − Ā)′(Σ−10 + (Z ′Z)−1)−1(A0 − Ā) (28)

v̄ = v0 + T (29)

and where Φ̂ and Ê are the OLS estimates. This prior features a Kronecker structure

that restricts somehow the way shrinkage can be imposed, but dramatically improves the

computation time. Simulating draws from p(A,Σ|B̃0, Y ) can therefore be easily performed

by generating a sequence of m draws {Σj}mj=1 from Σ|Y ∼ IW (S̄, v̄) and then for each j

drawing from A|Σ, Y ∼ N(Ā,Σj ⊗ Ω̄), which provides with the sequence {Aj}mj=1 .
Drawing from p(B̃0|A,Σ, Y ) is less straightforward, as B0 contains identification restric-

tions and also enters the model in a nonlinear way: Yt = A(L)B0Yt. To draw B̃0 conditional

onA,Σ one can use a Metropolis step. In particular, for each draw in the sequence {Aj ,Σj}mj=1 a
candidate B̃∗0j for each element of B̃0 is drawn by sampling from the following random walk:

vec(B̃∗0j) = vec(B̃0j−1) + cV ηt (30)

where ηt is a standard normal i.i.d. process and V is the Cholesky factor of the maximum

likelihood estimate of the variance of vec(B̃0). The candidate draw is then accepted with

probability:

αk = min

{
p(B̃∗0j |Σ, B̃0, Y )

p(B̃0j−1|Σ, B̃0, Y )
, 1

}

If the draw is accepted, then B̃0j = B̃∗0j , otherwise B̃0j = B̃0j−1. The scalar c is scaling

factor calibrated in order to have about 35% rejections.

Drawing in turn from p(A|B̃0,Σ, Y ), p(B0|A,Σ, Y ) and p(Σ|A, B̃0, Y ) provides a se-

quence of m draws
{
Aj ,Σj , B̃0

}m
j=1

from the joint posterior distribution of B̃0, A,Σ. Each

draw can be then inserted into equation (15), which can be used to derive the impulse

response functions for any horizon.

Given that the parameters in A(L) and B0 interact nonlinearly, there is a potential

concern about convergence if elements in either A(L) or B0 get close to 0. This potential

problem is dramatically mitigated by the normalization choice we make for B0 (setting the

first r columns to an identity matrix). In the Appendix we provide a series of convergence

checks on the draws of A(L), B0 and their product A(L)B0. The analysis provided in the

Appendix shows that the algorithm has good convergence properties and it is not affected

by problems related to the nonlinearity.
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4 Determining the rank of the system

4.1 Classical

The matter of determining the rank of the coeffi cient matrix in reduced rank VAR models

has been analyzed extensively in the literature. A paper by Camba-Mendez et al. (2003)

discusses this problem in detail. There are two main approaches. The first uses information

criteria. This approach simply estimates (6) for all possible values of r and chooses the one

that minimizes an information criterion (IC) that uses the fit of the model penalized by a

penalty term that depends on the number of free parameters associated with every possible

value of r. Standard information criteria can be used such as the Akaike IC or the Bayesian

IC. An attractive feature of the use of ICs that both r and the number of lags can be jointly

determined in a single search.

The second approach is based on sequential testing Starting with the null hypothesis of

r = 1, a sequence of tests is performed. If the null hypothesis is rejected, r is augmented by

one and the test is repeated. When the null cannot be rejected, r is adopted as the estimate

of the rank of each matrix Ai in (16). Here, A must be estimated in an unrestricted way,

i.e. without imposing a given rank. Then, standard tests of rank can be used on estimates

of A. So this approach boils down to a repeated application of a test of rank. We review

two such tests.

The first procedure, proposed by Cragg and Donald (1996), is based on the transfor-

mation of the matrix A using Gaussian elimination with complete pivoting3. r steps of

Gaussian elimination with full pivoting on matrix A amounts to the following operations:

Qr∗Rr∗Qr∗−1Rr∗−1 . . . Q1R1AC1 . . . Cr∗−1Cr∗ =


A11(r

∗) A12(r
∗)

0 A22(r
∗)


where Ri and Ci are pivoting matrices for step i and Qi are Gauss transformation matrices.

The pivoting matrices used to perform the first r∗ steps of Gaussian elimination are applied

to A to obtain the following relation

Rr∗Rr∗−1 . . . R1AC1...Cr∗−1Cr∗ = RAC = F =


F11(r

∗) F12(r
∗)

F21(r
∗) F22(r

∗)


where F is partitioned accordingly, i.e. F11(r∗) is of dimension r∗×r∗. Note that in this case

3The foundations behind this strategy follow the work of Gill and Lewbel (1992). The asymptotic dis-
tribution of the test suggested by Gill and Lewbel (1992) was incorrect, nonetheless, it provided researchers
with an ingenious strategy to test for the rank.
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F11(r
∗) has full rank, under the null hypothesis that ρ [A] = r∗. It then follows, (see Cragg

and Donald (1996)), that F22(r∗)− F21(r∗)F−111 (r∗)F12(r∗) = 0. The estimated counterpart

of the above relation, i.e. F̂22− F̂21F̂−111 F̂12 = Λ̂22(r
∗), may be used as a test statistic of the

hypothesis that the rank of A is r∗. Under regularity conditions, including the requirement

that
√
Tvec(Â − A)

d→ N(0, V ) where V has full rank, the following result can be shown,

under H0. √
Tvec(Λ̂22(r

∗))
d→ N(0,ΓV Γ′)

where Γ = Φ2 ⊗ Φ1 and Φ1 =
[
−F 21F−111 Im−r∗

]
R, Φ2 =

[
−F ′12F−1

′
11 In−r∗

]
C ′ and d→

denotes convergence in distribution. Then,

GE = Tvec Λ̂22(r
∗)′(Γ̂V̂ Γ̂

′
)
−1
vec Λ̂22(r

∗)
d→ χ2(m−r∗)(n−r∗)

where Γ̂ and V̂ are the sample estimates of Γ and V and χ2l denotes the χ
2 distribution

with l degrees of freedom.

The second testing procedure, suggested by Robin and Smith (2000), focuses on the

eigenvalues of quadratic forms of A. The quadratic form ΥAΠA′ where Υ and Π are

positive definite matrices, is considered. It follows that ρ [A] = ρ [ΥAΠA′] = r∗, and there-

fore this quadratic form has min(m,n) − r∗ zero eigenvalues. Additionally, the eigenvalues
of the estimator of the above quadratic form converge in probability to their population

counterparts. Robin and Smith (2000) consider the statistic

CRT = T

min(m,n)∑
i=r∗+1

λ̂i

where λ̂i are the eigenvalues of Υ̂ÂΠ̂Â′ in descending order, Υ̂ and Π̂ are estimates of Υ and

Π respectively. Under the null hypothesis, the above statistic converges in distribution to a

weighted sum of independent χ21 random variables. The weights are given by the eigenvalues

of (D′r∗⊗C ′r∗)V (Dr∗⊗Cr∗), τi, i = 1, . . . , (m−r∗)(n−r∗). Dr∗ and Cr∗ are n× (n−r∗) and
m× (m− r∗) matrices containing the eigenvectors corresponding to the n− r∗ and m− r∗

smallest eigenvalues of ΠA′ΥA and ΥAΠA′ respectively. The sample counterparts of the

above matrices may be obtained straightforwardly to estimate the asymptotic distribution

of the test statistic. A few comments are in order for this test. Choices for Υ and Π are not

discussed in much detail by Robin and Smith (2000). This choice can depend crucially on

the application considered. An obvious choice that can be made irrespective of application

is to set both Υ and Π equal to the identity matrix. Robin and Smith (2000) also consider

another choice for their Monte Carlo but they do not elaborate on their motivation. Finally,

it is worth noting that Robin and Smith (2000) claim that a big advantage of their test is
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that neither full nor known rank for V is needed or, therefore, assumed.

The above tests of rank and the theoretical results that justify them relate to the case

where N is finite. To the best of our knowledge, there are no extensions to the case where

N is large. However, we expect that for moderately large values of N they can provide a

useful guide for setting the value of r.

4.2 Bayesian

A natural way to choose the rank of the system is to compute the marginal data density

as a function of the chosen r. Such density is given by:

p(Y ) =

∫
p(Y |θ)p(θ)dθ

and the optimal rank for the system is associated with the model featuring the highest data

density:

r∗ = arg max
r

p(Y ) (31)

The probability p(Y ) =
∫
p(Y |θ)p(θ)dθ is approximated numerically by using Geweke’s

(1999) modified harmonic mean estimator. In particular, by collecting all the coeffi cients in

the vector θ = (A,Σ, B̃0) and considering the simulated posterior {θj , }mj=1 =
{
Aj ,Σj , B̃0

}m
j=1

the estimator is:

p̂(Y ) =

[
1

d

d∑
m=1

f(θm)

p(Y |θm)p(θm)

]−1
,

where f(·) is a truncated multivariate normal distribution calibrated using the moments of
the simulated posterior draws {θ}dm=1. See Geweke (1999) for details.

The determination of p1 and p2, i.e. the lag length of A(L) and B(L), could be also

based on the marginal likelihood. However, in practice computing the marginal likelihood

for this model is quite demanding because of the extremely high number of parameters.

Hence, the use of information criteria seems more promising.

5 Monte Carlo evaluation

To be completed

6 Empirical applications

To illustrate how to conduct empirically structural analysis using RR-VARs, we first repli-

cate in the RR-VAR context the BVAR analysis of the transmission of US monetary policy
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shocks conducted by Banbura, Giannone and Reichlin (2010), using the N -shock MA rep-

resentation of the RR-VAR. Then, we assess the effects of demand, supply and financial /

monetary shocks, modelling the same dataset but with the FAVAR-style MA representation

of the RR-VAR.

6.1 The effects of monetary policy shocks

We use the "medium" dataset of Banbura, Giannone, Reichlin (2010, BGR), which includes

the 20 variables described in Table 1. The table also reports the classification of each in-

dicator into "slow" and "fast", where slow moving variables can only react with a delay to

the monetary policy shock, while fast variables can react contemporaneously. Among slow

variables, there are nominal indicators such CPI, PPI and the PCE deflator, and real indica-

tors, such as industrial production, employment, and personal income. The fast indicators

are typically related to the financial sector, including interest rates, money aggregates and

the S&P’s stock price index. The sample is at monthly frequency and covers the period

January 1959 to December 2003.

The variables are modelled with a RR-VAR with 13 lags, in line with BGR. We set the

rank of the system to 3. We do so because while information criteria such as BIC and AIC

selected a rank of 1 and 2 respectively, having a rank of 3 offers a particularly convenient

way to identify the factors, a feature that we will exploit in the next empirical application

we consider. Lag exclusion Wald tests performed with a rank of 3 could not reject the null

that all the coeffi cients attached to the three factors were different from 0.

In line with the literature, the monetary policy shock is identified with a Cholesky scheme

where the federal funds rate is ordered after the slow moving variables and before the fast

ones. Formally, the impulse responses are based on the representation:

Yt = {A(L)[I −B0A(L)]−1B0 + I}Λ−1ε∗t (32)

where ε∗t are the structural shocks and Λ−1 is the Cholesky factor of the reduced form

shocks εt. The resulting s-period ahead response is:

Ψs = A1B0Ψs−1 + ...+Amin(s,p)B0Ψs−min(s,p); s > 0 (33)

with Ψ0 = {A(0)[I −B0A(0)]−1B0 + I}Λ−1 = Λ−1.

We simulate the distribution of the impulse responses using 5000 draws and plot in

Figure 1 the median, 5th, 16th, 84th, and 95th quantiles. For comparison, we also compute

and report the impulse responses using classical ML estimation. We do not report classical

bands, since bootstrapping yielded very large intervals.
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The results are overall in line with those reported by BGR. In particular, after a few

months with close to zero reaction, industrial production, capacity utilization, employment,

consumption and housing starts decline, while unemployment increases. There is a delayed

negative reaction also in CPI, PPI, PCE deflator, and earnings. Money and reserves de-

crease, while the exchange rate appreciates and the reaction of the stock market is close to

zero. The classical and (median) Bayesian responses are overall very similar.

6.2 Demand, supply and financial / monetary shocks

Using the same RR-VAR as in the previous example, we now analyze the effects of shocks to

demand, supply, and financial / monetary "factors". More precisely, we identify an output

factor, a price factor, and a financial / monetary factor by imposing restrictions on the

matrix B0, as detailed in Table 2. The resulting factors and their components are graphed

in Figure 2.

The impulse responses are now based on the representation:

Yt = {B′0(B0B′0)−1 +A(L)[I −B0A(L)]−1}P−1vt +B′0⊥(B0⊥B
′
0⊥)B0⊥εt, (34)

where P−1 is the Cholesky factor of the reduced form shocks ut in the VAR representation

of the factors, so that P−1SP−1
′

= Ω = B0ΣB
′. The s-period ahead responses on the factor

equations are:

Πs = C1Πs−1 + ...+ Cmin(s,p)Πs−min(s,p); s > 0 (35)

with Π0 = [I −B0A(0)]−1P−1 = P−1. The s-period ahead responses on the VAR equations

are:

Ψs = A1Πs−1 + ...+Amin(s,p)Πs−min(s,p); s > 0 (36)

with Ψ0 = {B′0(B0B′0)−1 +A(0)[I −B0A(0)]−1}P−1 = B′0(B0B
′
0)
−1P−1.

We simulate the distribution of the impulse responses using 16000 draws and plot the

median responses together with the 5th, 16th, 84th, and 95th quantiles in Figure 6-9. Specif-

ically, Figure 3 reports the responses of the factors, while Figures 4-6 those of the 20 variables

to each of the three shocks.

Starting from Figure 3 and associating a shock to F1 with a demand shock, with see

that both F2 (prices) and F3 (financial / monetary) increase. With a supply shock (on

F2), the output factor (F1) decreases and the financial / monetary factor increases (F3).

With a financial / monetary shock (on F3), both the output (F1) and the price (F2) factors

decrease, though with a delay, along the lines of the delayed reactions of real and nominal

variables to the monetary policy shock we have observed in the previous example.

Let us now move to the effects of the single structural shocks on each of the 20 variables
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under analysis, and start with the demand shock, whose effects are illustrated in Figure 4.

All the real variables react positively, and the prices also increase. As a consequence, the

federal fund rate increases substantially, as well as the 10 year rate, with a drop in monetary

indicators and in the stock market index and an appreciation of the effective exchange rate.

The effects are generally statistically significant.

The effects of the supply shock are presented in Figure 5. Now all the real variables

deteriorate, and all the price variables increase. The latter effect is more marked than the

former, so that there is an increase in the federal fund rate, though much smaller than

in the case of the demand shock. The 10 year rate also increases, and there is a drop in

the monetary indicators and in the stock market index and a depreciation of the effective

exchange rate, followed by an appreciation that starts about one year after the shock. The

effects are generally statistically significant, in particular at short horizons in the case of the

fast variables.

Finally, Figure 6 illustrates the consequences of a financial / monetary shock. The

responses are very similar to those we have obtained in the previous subsection as a reaction

to a monetary policy shock. In particular, there is a deterioration in all the real variables

and a decrease in all the price variables, sometimes with a delay of a few months. The federal

funds rate increases, as well as the 10 year rate, while the monetary indicators drop and the

exchange rate appreciates. The main difference with respect to the analysis in the previous

subsection is in the reaction of the stock index, which is now negative and significant, at

least in the short run, rather than close to zero and positive.

Overall, these empirical applications illustrate how the RR-BVAR can be easily used to

conduct structural analysis, along the lines of either the BVAR approach or the FAVAR

methodology. The two possibilities lead to very similar results in the case of a monetary

shock, with sensible responses from an economic point of view.

7 Conclusions

In this paper we address the issue of parameter dimensionality reduction in Vector Autore-

gressive models (VARs) for many variables by imposing reduced rank restrictions on the

coeffi cient matrices.

We derive the Wold representation implied by reduced rank VARs (RR-VARs), and show

that it is also closely related to that associated with dynamic factor models.

Next, we describe classical and Bayesian estimation methods for large RR-VARs, and

illustrate how the estimated models can be used for structural analysis.

Structural analysis with the RR-VARs is then illustrated with empirical applications

on the transmission mechanism of monetary policy, and of demand, supply and financial
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shocks, in a model that includes 20 key macroeconomic variables for the US.

Overall, the method is general, simple, and well performing. Hence, it is promising as

an alternative tool for structural analysis using information in large datasets.

Appendix: convergence diagnostics

In this section we discuss convergence of the algorithm used in the paper. The results in

the paper are based on 2000 draws from the simulated posterior, obtained as follows. We

draw 10 parallel chains of 2400 draws each. For each chain we discard the first 400 draws

and keep each 10-th draw. Then the draws are from the various chains are mixed together.

We assess convergence by looking at the Potential Scale Reduction Factor (PSRF),

the autocorrelation function and the recursive means of the coeffi cients. The Potential

Scale Reduction Factor (PSRF), proposed by Gelman and Rubin (1992) is a measure of

convergence based within-chain and between-chain variance of the draws. When the PRSF

is high (greater than 1.1 or 1.2), this is taken as indication that one should run the chains

longer to improve convergence to the stationary distribution. The autocorrelation function

is directly related to the effi ciency of the algorithm (see e.g. Geweke (1992)).

We have computed convergence diagnostics for all the coeffi cients, but we report only

the results related to the more problematic coeffi cients to save space. In particular, we

only report results for the estimation of the second empirical application on demand, supply

and financial shocks. This is computationally more challenging because of the restrictions

imposed on the matrix B0.

Figure 7 reports the results of the convergence checks and is organized as follows. The

first row of graphs contains results for the parameters in A(L), the second row of graphs

contains results for the parameters in B̃0, the third row contains results for the product

A(L)B0. Then, in the first column we report the distribution of the PRSF across all the

coeffi cients. As is clear, the distribution of the PRSF is concentrated around the optimal

value of 1, signaling convergence. In the second and third column we report results related

to the autocorrelation functions. As many coeffi cients are included in the matrices A(L),

B̃0 and A(L)B0, we report in the second column of graphs the maximum autocorrelation

coeffi cient at all lag orders up to 50. So for example in the panel at the center of Figure

7 we report the maximum autocorrelation of the coeffi cients in B̃0. Similarly, in the last

columns we report the median autocorrelation coeffi cient at all lag orders up to 50. As is

clear, the autocorrelation are small and decay very rapidly, especially for the coeffi cients in

A(L) and A(L)B0.

As the draws from B̃0 are more problematic, because these parameter enter the model

nonlinearly and are drawn using a Metropolis step, we also provide graphs documenting the
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autocorrelation function and recursive means for the 17 coeffi cients entering the matrix B̃0

(listed in Table 2) in our empirical application on demand, supply and financial shocks. The

autocorrelation functions are depicted in Figure 8 and show that for all coeffi cients there is

a quick decay to 0. The recursive means for each of the 10 chains considered are depicted

in Figure 9, and as is clear each of the 10 chains converges to the mean of the stationary

target distribution.
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Table 1: Variables used in the empirical analysis

Variable Short name Type

Employees on nonfarm payroll EMP: TOTAL slow

CPI, all items CPI-U: ALL slow

Index of sensitive material prices SENS MAT’LS PRICE slow

Personal income PI slow

Real Consumption CONSUMPTION slow

Industrial Production Index IP: TOTAL slow

Capacity Utilization CAP UTIL slow

Unemployment rate U: ALL slow

Housing starts HSTARTS: TOTAL slow

Producer Price Index (finished goods) PPI: FIN GDS slow

Implicit price deflator for personal consumption expenditures PCE DEFL slow

Average hourly earnings AHE: GOODS slow

Federal Funds, effective FEDFUNDS fast

M1 money stock M1 fast

M2 money stock M2 fast

Total reserves of depository institutions RESERVES TOT fast

Nonborrowed reserves of depository institutions RESERVES NONBOR fast

S&P’s common stock price index S&P 500 fast

Interest rate n treasury bills, 10 year constant maturity 10 YR T-BOND fast

Effective Echange rate EX RATE: AVG fast
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Table 2: Identification of the "factors" in the RR-VAR

Variable Short name F1 F2 F3

Employees on nonfarm payroll EMP: TOTAL 1 0 0

CPI, all items CPI-U: ALL 0 1 0

Index of sensitive material prices SENS MAT’LS PRICE 0 b2,3 0

Personal income PI b1,4 0 0

Real Consumption CONSUMPTION b1,5 0 0

Industrial Production Index IP: TOTAL b1,6 0 0

Capacity Utilization CAP UTIL b1,7 0 0

Unemployment rate U: ALL b1,8 0 0

Housing starts HSTARTS: TOTAL b1,9 0 0

Producer Price Index (finished goods) PPI: FIN GDS 0 b2,10 0

Implicit price deflator for personal consumption expenditures PCE DEFL 0 b2,11 0

Average hourly earnings AHE: GOODS b1,12 0 0

Federal Funds, effective FEDFUNDS 0 0 1

M1 money stock M1 0 0 b3,14

M2 money stock M2 0 0 b3,15

Total reserves of depository institutions RESERVES TOT 0 0 b3,16

Nonborrowed reserves of depository institutions RESERVES NONBOR 0 0 b3,17

S&P’s common stock price index S&P 500 0 0 b3,18

Interest rate n treasury bills, 10 year constant maturity 10 YR T-BOND 0 0 b3,BaiandNg(2009)

Effective Echange rate EX RATE: AVG 0 0 b3,20
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Figure 1: Bayesian and classical impulse responses to monetary policy shock based on RR-
BVAR

23



Figure 2: The RR-BVAR "factors" and their components
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Figure 3: Responses of the RR-BVAR structural "factors"
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Figure 4: Effects of a demand shock computed from the factor representation of the RR-
BVAR
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Figure 5: Effects of a supply shock computed from the factor representation of the RR-
BVAR
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Figure 6: Effects of a financial / interest rate shock computed from the factor representation
of the RR-BVAR
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Figure 7: Convergence Diagnostics. The first row of graphs contains results for the para-
meters in A(L), the second row of graphs contains results for the parameters in B̃0, the
third row contains results for the product A(L)B0. Panels in the first column contain the
distribution of the PRSF across all the coeffi cients , panels in the second column contain
the maximum autocorrelation coeffi cient, panels in the third colon contain the median au-
tocorrelation coeffi cient.
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Figure 8: Autocorrelation function of the coeffi cients in B̃0.
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Figure 9: Recursive means of the coeffi cients in B̃0. 10 independent chains.
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