
Generalized Autoregressive Score Models for
Time-varying Parameters
in Economics and Finance

Drew Creala, Siem Jan Koopmanb, André Lucasb,c
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Motivation and contributions

• Macro Economic and Financial time series often share common
features: business cycle dynamics, for example.

• Such time series can be observed at different frequencies.

• Characteristics of the time series can be different.

• Here : observation-driven mixed measurement panel data models.

• The approach allows for non-linear, non-Gaussian models with
common factor across different distributions.

• Application I: bivariate model for volatility and dependence with
long memory features

• Application II: model for macro time series, credit ratings transitions
and loss-given-default (LGD) series. This model incorporates

1. a time-varying Gaussian model
2. a time-varying ordered logit
3. a time-varying beta distribution
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Regression model

Regression model :

yt = Xtβ + εt , εt ∼ NID(0, σ2), t = 1, . . . , n,

with usual assumptions:

• parameter vector is ψ = (β;σ2).

• estimation by least squares methods.

Let us consider that some coefficients are not constant over time :

yt = Xtβt + εt , εt ∼ NID(0, σ2
t ), ψt = (βt ;σ

2
t );

here we have

• for each t, different value for ψt ...

• many different unknown values...

• degrees of freedom decreases rapidly !
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Time-varying regression model

Time-varying regression model :

yt = Xtβt + εt , εt ∼ NID(0, σ2
t ), ψt = (βt ;σ

2
t ),

here ψt is allowed to have different values for different t.

Different modelling options for a time-varying ψt :

• breaks (different ψt in different pre-defined periods)

• Markov-switching structures

• deterministic functions of unknown (exogenous) variables

• functions of time, non-parametric or semi-parametric

• stochastic functions of time

We focus on parametric functions of time, say a random walk :

βt+1 = βt + ηt .
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Time-varying regression model

Time-varying regression parameter model :

yt = Xtβt + εt , εt ∼ NID(0, σ2), t = 1, . . . , n.

In case we assume only a stochastic time-varying function for βt :

βt+1 = βt + ηt , ηt ∼ NID(0, σ2
η),

with some initial condition for β1.

This is a special case of a state space model.
The Kalman filter and related methods can be used for its analysis.

In a linear Gaussian framework, the methodology for time-varying
parameters is well established in econometrics and statistics.

Time Series Analysis by State Space Methods

by J. Durbin and S.J. Koopman (2012, second edition, OUP).
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Regression model with time-varying variance

Let us now focus on only a time-varying variance :

yt = Xtβ + εt , εt ∼ NID(0, σ2
t ),

or
yt = Xtβ + σtεt , εt ∼ NID(0, 1),

or

yt = Xtβ + exp(
1

2
ht)εt , εt ∼ NID(0, 1),

where ht = log σ2
t and with time-varying process

ht+1 = ω + φht + σηηt , ηt ∼ NID(0, 1), t = 1, . . . , n,

with some initial condition for h1.

This is a nonlinear state space model!
Kalman filter and related methods cannot be used for its analysis.
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Nonlinear time-varying models

Consider the nonlinear time series model

yt = Xtβ + exp(
1

2
ht)εt , εt ∼ NID(0, 1),

ht+1 = ω + φht + σηηt , ηt ∼ NID(0, 1), t = 1, . . . , n,

with some initial condition for h1.

This model is known (often Xtβ is replaced by some constant µ) as the
Stochastic Volatility (SV) model which can be used for the modelling of
volatility in financial markets.

SV model is related to theoretical models for option pricing.

SV model is often viewed as alternative to the GARCH model:
Generalized Autoregressive Conditional Heteroskedasticity
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Nonlinear time-varying models
Consider the SV model

yt = µ+ exp(
1

2
ht)εt , εt ∼ NID(0, 1),

ht+1 = ω + φht + σηηt , ηt ∼ NID(0, 1), t = 1, . . . , n,

with some initial condition for h1.

Analysis and parameter estimation for SV models cannot be based on
analytical results.
For example, likelihood evaluation is based on

p(y) =

∫
p(y , h)d h =

∫
p(y |h)p(h)d h.

We may rely on simulation methods, in its crude form

p̂(y) = M−1
M∑
i=1

p(y |hi ), hi ∼ p(h).

Many developments to report here ...
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Time-varying parameter estimation: many approaches

• Extended Kalman filter (Taylor approximations);
Anderson and Moore (1979).

• Unscented Kalman filter (unscented transformations);
Julier and Uhlmann (1997).

• Efficient / Simulated Method of Moments;
Gallant, Hsieh and Tauchen (1997) and Andersen, Chung, and Sorensen
(1999).

• Importance sampling (simulated MLE);
Durbin and Koopman (1997, 2000, 2002), Shephard and Pitt (1997),
Danielsson (1997), Richard and Zhang (2007).

• Particle filtering (sequential importance sampling);
Gordon, Salmond and Smith (1993), Kitagawa (1996).

• Markov chain Monte Carlo (Bayesian estimation);
Carter and Kohn (1994), de Jong and Shephard (1995).

• Particle MCMC;
Andrieu, Doucet and Holenstein (2010), Chopin (2012).
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Let us return to some basics

Consider model for the data y which we represent as p(y ;ψ).
Parameter vector is ψ.
In time series, we evaluate likelihood function via prediction errors

p(y ;ψ) = p(y1;ψ)
n∏

t=2

p(yt |y1, . . . , yt−1;ψ).

Assume that we want to consider a sub-set of ψ as time-varying :

ψt = (ft ; θ),

where ft represents the time-varying parameter and θ the remaining fixed
coefficients.

The TV parameter ft typically represents βt and/or σt .
The TV parameter may be modelled in an autoregressive form

ft+1 = ω + Bft + A× ” some innovation ”.
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A new approach

The t-th contribution to the loglikelihood ` = log p(y ;ψ) :

`t = log p(yt |y1, . . . , yt−1, f1, . . . , ft ; θ),

where we assume that f1, . . . , ft are known (they are realized).

The parameter value for next period, ft+1, is determined by an
autoregressive updating function that has an innovation equal to the
score of `t with respect to ft .

By determining ft+1 in this way, we obtain a recursive algorithm for the
estimation of time-varying parameters.

We have labelled this approach as the

generalized autoregressive score model,

or the GAS model. More details are given next.
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Generalized autoregressive score model
For the observation equation,

yt ∼ p(yt |Yt−1, ft ; θ), Yt = {y1, . . . , yt},

we propose a GAS updating scheme for ft based on

ft+1 = ω + Bft + Ast ,

where the innovation or driving mechanism st is given by

st = St · ∇t

where

∇t =
∂ ln p(yt |Yt−1, ft ; θ)

∂ft
,

St = I−1
t−1 = −Et−1

[
∂2 ln p(yt |Yt−1, ft ; θ)

∂ft∂f ′t

]−1

.
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Volatility modelling

We have
yt = µ+ εt , εt ∼ NID(0, ft).

The GAS model for ft can be constructed by considering

yt ∼ p(yt |Yt−1, ft ; θ),

ft+1 = ω + Bft + Ast ,

with driving mechanism
st = St · ∇t

where

∇t =
∂ ln p(yt |Yt−1, ft ; θ)

∂ft
,

St = I−1
t−1 = −Et−1

[
∂2 ln p(yt |Yt−1, ft ; θ)

∂ft∂f ′t

]−1

.
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GAS variance updating reduces to GARCH
Assume µ = 0, we have

yt = εt , εt ∼ NID(0, ft),

with variance ft = σ2
t . Score and inverse information matrix are:

ln p(yt |Yt−1, ft ; θ) = −1

2
ln 2π − 1

2
ln ft −

y2
t

2ft
,

∇t =
1

2f 2
t

y2
t −

1

2ft
=

1

2f 2
t

(y2
t − ft),

Et−1(∇t) = 0, −It−1 = − 1

2f 2
t

,

St = I−1
t−1 = 2f 2

t ,

and we have st = St · ∇t = y2
t − ft for the GAS updating

ft+1 = ω + Bft + A(y2
t − ft).

Hence, this GAS update scheme reduces to GARCH for ft = σ2
t :

σ2
t+1 = ω + Bσ2

t + A(y2
t − σ2

t ) = ω + βσ2
t + αy2

t , (β = B − A).
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Another example: modelling durations

Consider an exponential (E is exponential density) model,

yt = λtεt , εt ∼ E(1).

Let ft = λt . The score and inverse of the information matrix are:

∇t =
yt
f 2
t

− 1

ft
,

St = I−1
t−1 = f 2

t .

Here the GAS update scheme reduces to
the E-ACD model of Engle and Russell (1998):

ft+1 = ω + A(yt − ft) + Bft
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More of such special cases

GAS updating for appropriate observation densities and particular scaling
choices reduces to well-known GARCH-type time series models.

• GARCH for N(0, ft) : Engle (1982), Bollerslev (1986)

• EGARCH for N(0, exp ft) : Nelson (1991)

• Exponential distribution (ACD and ACI): Engle & Russell (1998)
and Russell (2001), respectively

• Gamma distribution (MEM): Engle (2002), Engle & Gallo (2006)

• Poisson: Davis, Dunsmuir & Street (2003)

• Multinomial distribution (ACM): Russell & Engle (2005)

• Binomial distribution: Cox (1956), Rydberg & Shephard (2002)

We discuss this general GAS framework in
Creal, Koopman and Lucas (2012, JAE).
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What is the use of this ?

• In econometrics, score and Hessian are familiar entities in estimation;

• Using contribution of score at time t only (wrt predictive density)
and using it as an innovation in a time-varying parameter scheme is
not unreasonable.

• It turns out that many GARCH-type time series models are
effectively constructed in this way.

• In case of GARCH (Gaussian), innovation or driver mechanism has
an interpretation : E(y2

t ) = σ2.

• In other cases (incl. GARCH with t-densities), choice of driver
mechanism is not so clear.

• We then can rely on GAS and still get an appropriate updating
scheme.
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Statistical properties
The GAS(p, q) model is

yt ∼ p(yt |Yt−1, ft , ft−1, . . . , ft−q; θ),

ft+1 = ω +

p−1∑
i=0

Ai st−i +

q−1∑
j=0

Bj ft−j

st = St · ∇t

• The expectation of the score is zero: Et−1[∇t ] = 0.

• As a result, st is a martingale difference sequence.

• If ft is stationary, its unconditional expectation is
E[ft ] = ω (I − B(1))−1.

• We have established conditions for stationarity and ergodicity (SE):
Blasques, Koopman and Lucas (2012).

• It will facilitate derivations for asympotic properties.

• Other scalings St , other link functions, will lead to different
properties.

18 / 54



Different specifications

yt ∼ p(yt |Yt−1, ft , ft−1, . . . , ft−q; θ),

ft+1 = ω +

p−1∑
i=0

Ai st−i +

q−1∑
j=0

Bj ft−j

st = St · ∇t

• The default choice for scaling is St = I−1
t−1 or St = I−1/2

t−1 .

• Alternative: St = I ; ”steepest descent” is less stable...

• In case default choice is close to singular, we can do some mild
smoothing of past It ’s using an EWMA scheme:

Ict−1 = α̃Ict−2 + (1− α̃)It−1,

and St = (Ict−1)−1. This appears to work very effectively.

• Extensions with long-memory: Janus, Koopman and Lucas (2012).
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Volatility Model

GAS model specification

Volatility GAS models

� A class of volatility models is given by

yt = µ+ σ(ft)ut , ut ∼ pu(ut ; θ), t = 1, 2, . . . ,T , (1)

ft+1 = ω + βft + αst , (2)

where:

• σ() is some continuous function;

• pu(ut ; θ) is a standardized disturbance density;

• st is the scaled score based on ∂ log p(yt |Yt−1, ft ; θ) / ∂ft .

� Some special cases

• σ(ft) = ft and pu is Gaussian : GAS ⇒ GARCH;

• σ(ft) = exp(ft) and pu is Gaussian : GAS ⇒ EGARCH;

• σ(ft) = exp(ft) and pu is Student’s t : GAS ⇒ Beta-t-EGARCH.
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General FIGAS specification

FIGAS model specification

Introducing FIGAS

The Fractionally Integrated Generalized Autoregressive Score (FIGAS)
model is given by

yt ∼ p(yt |Yt−1, ft ; θ), t = 1, 2, . . . ,T , (3)

f ∗t = (1− L)d ft , f ∗t+1 = ω + βf ∗t + αst , (4)

where:

• yt denotes dependent variable; Yt = [y1, . . . , yt ]
′;

• ft is the time-varying parameter of interest;

• θ collects static parameters;

• d is the fractional integration order;

• (1− L)d = 1− dL + d(d−1)
2! L2 − d(d−1)(d−2)

3! L3 + . . .

• st is the scaled score based on ∂ log p(yt |Yt−1, ft ; θ) / ∂ft .
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General FIGAS specification

� We introduce time-varying parameters with long memory properties in
a bivariate heavy-tailed distribution for a set of stock equity returns.

• heavy-tails in returns with different tail properties;

• outliers for marginal and/or joint densities should not dillute
volatility and/or correlation processes; especially relevant for long
memory features;

• tail dependence is modeled explicitly.

Our approach :

� We model marginal series by means of conditonal Student’s t densities
and we model dependence by means of a t copula.

� The score function in the Student’s t class of distributions depends on
conditional weights that downweight extreme observations.

� The degrees of freedom parameter for the Student’s t distribution
handles the level of robustness for statistical inference.
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FIGAS for conditional variance
� Let yt denote (demeaned) log-return of some asset, assume

yt = σtεt , εt ∼ Student’s tν(0, 1),

with loglikelihood function given by

`t = c(ν)− 1

2
log(π)− 1

2
log(σ2

t )− ν + 1

2
log

(
1 +

y2
t

(ν − 2)σ2
t

)
,

where c(ν) = log
{

Γ
(
ν+1

2

)
/Γ
(
ν
2

)}
− 1

2 log(ν − 2) and ν > 2.

� Let ft = log(σ2
t ), we have

∇t =
1

2σ2
t

[
ωt y

2
t − σ2

t

]
and It =

1

2

ν

ν + 3
,

where

ωt =
ν + 1

ν − 2 + y2
t /σ

2
t

∈ [0, (ν + 1)/(ν − 2)].

Time t weight ωt attains zero if y2
t too large relative to current level of

volatility.
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FIGAS for conditional variance : the resulting model
The FIGAS model is then given by :

• demeaned log-return of some asset :

yt = σtεt , εt ∼ Student’s tν(0, 1),

with loglikelihood function given by

`t = c(ν)− 1

2
log(π)− 1

2
log(σ2

t )− ν + 1

2
log

(
1 +

y2
t

(ν − 2)σ2
t

)
,

where σ2
t = exp(ft).

• log-variance is updated :

f ∗t+1 = ω + βf ∗t + αst , f ∗t = (1− L)d ft ,

where the scaled score is given by

st = I−
1
2

t ∇t , ∇t =
1

2σ2
t

[
ωt y

2
t − σ2

t

]
and It =

1

2

ν

ν + 3
.

• FIGAS with leverage (FIGASL) : α⇒ α + γ1(yt<0).
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Conditional volatility
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Figure 1: Estimated vol for P&G daily returns over January 4, 1993 to May 28, 2010
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Robust filtering of volatility: the role of weight ωt
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Figure 2: P&G case study
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FIGAS for bivariate conditional dependence
� for dependence between two marginal series : bivariate t copula
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2

∏2
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it/η)
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2

,

where xit = t−1
η (uit) , i = 1, 2, uit ∈ (0, 1), ρt ∈ (−1, 1) and η > 0.

� t copula captures tail dependence which is governed by ρt and η

� extreme occurences of x1t and/or x2t can be due to heavy-tail nature
(low η) of the t copula, not neccessarily due to high ρt :
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FIGAS for bivariate conditional dependence
Define ft = log (1 + ρt / 1− ρt) ∈ R, we have

∇t =
ρ̇t

(1− ρ2
t )2

[
(1 + ρ2

t )
(
πtx1tx2t − ρt

)
− ρt

(
πtx

2
1t + πtx

2
2t − 2

)]
,

It =
ρ̇2
t

(1− ρ2
t )2

(
1 + ρ2

t −
2ρ2

t

η + 2

)
η + 2

η + 4
,

where ρ̇t is derivative of ρt wrt ft , with time-dependent weight defined as

πt =
η + 2

η + mt
∈ [0, (η + 2)/η],

where

mt = xt
′R−1

t xt ≥ 0, with xt = [x1t x2t ]
′ and Rt =

(
1 ρt
ρt 1

)
.

For a finite η, extreme observations x1t and/or x2t leading to a large
Mahalanobis distance mt will, as the result of downweighting via πt , have
limited impact on the correlation dynamics.
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FIGAS for bivariate conditional dependence
The FIGAS model for dependence is then given by :

• The t-copula is given by (27) with

ρt =
1− exp ft
1 + exp ft

,

• logit-dependence is updated :

f ∗t+1 = ω + βf ∗t + αst , f ∗t = (1− L)d ft ,

where the scaled score is given by

st = I−
1
2

t ∇t ,

where

∇t =
ρ̇t

(1− ρ2
t )2

[
(1 + ρ2

t )
(
πtx1tx2t − ρt

)
− ρt

(
πtx

2
1t + πtx

2
2t − 2

)]
,

It =
ρ̇2
t

(1− ρ2
t )2

(
1 + ρ2

t −
2ρ2

t

η + 2

)
η + 2

η + 4
.
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Conditional dependence
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Figure 3: Estimated correlation for GE/KO daily returns over January 4, 1993 to May 28, 2010
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Robust filtering of correlation: the role of πt
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Figure 4: GE/KO case study

31 / 54



Credit Risk Application with Macro and Finance factors

• Economic time series often share common features, e.g. business
cycle dynamics.

• Economic time series may be continuous and/or discrete and be
observed at different frequencies.

• We introduce
observation-driven mixed measurement panel data models

• The approach allows for non-linear, non-Gaussian models with
common factor across different distributions.

• Application: we develop a models for credit ratings transitions and
loss-given-default (LGDs) with macro factors.

• The models include:

1. Time-varying Gaussian model
2. Time-varying ordered logit
3. Time-varying beta distribution

32 / 54



Mixed measurement panel data models

We introduce mixed measurement observation driven models

yit ∼ pi (yit |ft ,Yt−1;ψ), i = 1, . . . ,N,

ft+1 = ω + Bft + Ast

The score function is

st = St∇t

∇t =
N∑
i=1

δit∇i,t =
N∑
i=1

δit
∂ log pi (yit |ft ,Yt−1;ψ)

∂ft
,

• The observations yit may come from different distributions.

• The factors ft may be common across distributions.

• KEY: The score function allows us to pool information from different
observations to estimate the common factor ft .

• δit is an indicator function equal to 1 if yit is observed and zero otherwise.
Missing values are naturally taken into account.
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Scaling matrix

Consider the eigenvalue-eigenvector decomposition of Fisher’s (conditional)
information matrix

It = Et−1[∇t∇′t ] = UtΣtU
′
t ,

The scaling matrix is then defined as

St = UtΣ
−1/2
t U′t

• St is then the “square root” of a generalized inverse.

• The innovations st driving ft have an identity covariance matrix, when the info.
matrix is non-singular.

• The conditional information matrix is additive for our models:

It = Et−1[∇t∇′t ] =
N∑
i=1

δit Ei,t−1[∇it∇′it ].
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Log-likehood function and ML estimation

• The log-likelihood function for an observation-driven model can
easily be computed.

• The ML estimator is

ψ̂ = arg max
ψ

T∑
t=1

N∑
i=1

δit log pi (yit |ft ,Yt−1;ψ),

• Estimation is similar to a GARCH model.
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Credit risk

• Growing econometrics literature on models for credit risk: McNeil et
al. (2005), Bauwens and Hautsch (JFEct, 2006), Gagliardini and
Gourieroux (JFEct, 2005), Koopman Lucas and Monteiro (JEct,
2008), Duffie et al. (JFE, JoF 2008).

• Basic observations:
1. Probability of default varies over time with the business cycle.
2. Conditional on default, the loss (recovery rate) varies with the business

cycle.
3. We observe excess clustering of defaults and ratings transitions beyond

what can be explained by simply adding covariates.

4. The literature focuses on a credit risk or frailty factor.

• Industry standard models are too simple to capture these features.

• New models in the literature are parameter driven models requiring
simulation methods for estimation.

• We provide observation driven alternatives.
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Data: Moody’s and FRED

• We observe data from Jan. 1980 to March 2010.

• 7, 505 companies are rated by Moody’s.

• We pool these into 5 ratings categories (IG, BB, B, C, D).

• We observe transitions, e.g. IG → BB or C → D

• There are J = 16 total types of transitions.

• 19,450 total credit rating transitions.

• 1,342 transitions are defaults.

• 1,125 measurements of loss-given default (LGD).

• LGD is the fraction of principal an investor loses when a firm
defaults.

• We also observe six macroeconomic variables: industrial production
growth, credit spread, unemployment, annual S&P500 returns,
realized volatility, real GDP growth (qtly).
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Models

• Credit ratings can be modeled using the (static) ordered probit
model of CreditMetrics; one of the current industry standards, see
Gupton Stein (2005).

• LGD’s are often modeled by (static) beta distributions.

• GOAL: Build models that improve on current industry standards and
are (relatively) easy to implement and estimate.

1. Time-varying Gaussian model
2. Time-varying ordered logit

3. Time-varying beta distribution

• Forecasting credit risk.

• Simulation of loss distributions and scenario analysis.

• Bank executives and regulators and can use them for “stress
testing.”
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Mixed measurement model for credit risk

ym
t ∼ N (µt ,Σm)

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

• ym
t are the macro variables.

• y c
i,t are indicator variables for each credit rating j for firm i .

• y r
k,t are the LGDs for the k-th default.

• Kt are the number of defaults in period t.

• µt , πijt , and (akt , bkt) are functions of an M × 1 vector of factors ft .
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Time varying Gaussian model for macro data

ym
t ∼ N (µt ,Σm) ,

µt = Zmft .

• Zm is a (6×M) matrix of factor loadings.

• Σm is a (6× 6) diagonal covariance matrix.

• S̃t is a selection matrix indicating which macro variables are
observed at time t.

∇m
t =

(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1

S̃t (ym
t − µt) ,

Imt =
(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1

S̃tZ
m.
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Moody’s monthly credit ratings transitions
The data have been pooled together each month.
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Time-varying ordered logit

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,
πijt = P [Ri,t+1 = j ] = π̃ijt − π̃i,j−1,t ,

π̃ijt = P [Ri,t+1 ≤ j ] =
exp(θijt)

1 + exp(θijt)
,

θijt = zcijt − Z c′
it ft .

• Jc = 5 categories j ∈ {IG, BB, B, C, D}.
• Rit is the rating for firm i at the start of month t.

• y c
it is an indicator variable for each rating type.

• πijt is the probability that firm i is in category j .

• π̃i,D,t = 0 and π̃i,IG,t = 1.

• To our knowledge, a time-varying ordered logit model is new.
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Time-varying ordered logit

The contribution to the log-likelihood at time t is

ln pi (y
c
it |ft ,Yt−1;ψ) =

Nt∑
i=1

Jc∑
j=1

y c
ijt log (πijt)

The score and information matrices are

∇c
t = −

Nt∑
i=1

Jc∑
j=1

y c
ijt

πijt
· π̇ijt · Z c

it ,

Ict =
Nt∑
i=1

nit

∑
j

π̇2
ij,t

πij,t

 Z c
itZ

c′
it

where

π̇ijt = π̃ijt (1− π̃ijt)− π̃i,j−1,t (1− π̃i,j−1,t) .
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Loss given default

• When a firm defaults, investors typically lose a fraction of their
investment (alternatively, they recover a fraction of their
investment).

• The fraction of losses experienced by investors also varies with the
business cycle.

• We develop a new model for a time-varying beta distribution.

• See McNeil and Wendin (2007 JEmpFin) for Bayesian inference in a
state space model.
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Loss given default by transition type
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Time-varying beta distribution

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

akt = βr · µr
kt

bkt = βr · (1− µr
kt)

log (µr
kt/ (1− µr

kt)) = z r + Z r ft .

• We observe Kt ≥ 0 defaults at time t.

• 0 < y r
k,t < 1 is the amount lost conditional on the k-th default.

• µr
kt is the mean of the beta distribution.

• z r is the unconditional level of LGDs.

• Z r is a (1×M) vector of factor loadings.

• βr is a scalar parameter
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Time-varying beta distribution

The contribution to the log-likelihood at time t is

ln pi (y
r
kt |ft ,Yt−1;ψ) =

Kt∑
k=1

(akt − 1) log
(
y r
kt

)
+ (bkt − 1) log

(
1− y r

kt

)
− log [B (akt , bkt)]

The score and information matrices are

∇r
t = βr

Kt∑
k=1

µ
r
kt(1− µr

kt)
(
Z r)′ (1,−1)

((
log(y r

kt), log(1− y r
kt)
)′ − Ḃ (akt , bkt)

)

Irt = βr

Kt∑
k=1

(
µ
r
kt(1− µr

kt)
)2 (Z r)′ (1,−1)

(
B̈ (akt , bkt)

)
(1,−1)′ Z r

where

σ2
kt = µr

kt · (1− µr
kt)/(1 + βr ).
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Estimation details

• The macro data ym
t has been standardized.

• We consider models with p = 1 and q = 1 factor dynamics.

• For identification of the level parameters, we set ω = 0 in the factor
recursion:

ft+1 = A1st + B1ft

• For identification of the factors, we also impose restrictions on
Zm,Z c , and Z r .

• Some parameters have been pooled for “rare” transitions; e.g.,
IG → D and BB → D.

• Moody’s re-defined several categories in April 1982 and Oct. 1999
causing incidental re-ratings (outliers), which we handle via dummy
variables for these dates.
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AIC, BIC, and log-likelihoods for different models

(2,0,0) (2,1,0) (2,2,0) (3,0,0)
log-Like -40447.9 -40199.1 -40162.8 -40056.2

AIC 81005.9 80520.1 80457.0 80242.4
BIC 81640.0 81223.0 81218.0 80991.0

(3,1,0) (3,2,0) (3,1,1) (3,2,1)
log-Like -39817.1 -39780.8 -39812.6 -39780.0

AIC 79776.2 79713.6 79771.2 79716.0
BIC 80594.0 80589.0 80612.0 80615.0

The number of factors for each data type are represented by (m, c , r).
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Parameter estimates for the (3,2,0) model

Macro loadings Zm

macro1 macro2 macro3 frailty1 frailty2

IP 1.000 0.000 0.000 0.000 0.000

UR -0.892∗∗∗ 0.122∗∗∗ -0.062∗ 0.000 0.000
(0.037) (0.041) (0.040)

RGDP 0.811∗∗∗ 0.072 0.336∗∗∗ 0.000 0.000
(0.066) (0.079) (0.074)

Cr.Spr. -0.169∗∗ 1.000 0.000 0.000 0.000
(0.085)

rS&P 0.049 -0.268∗∗∗ 1.223∗∗∗ 0.000 0.000
(0.093) (0.081) (0.093)

σS&P -0.007 0.648∗∗∗ 1.000 0.000 0.000
(0.107) (0.084)
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Parameter estimates for the (3,2,0) model

Credit rating and LGD loadings Z c and Z r

macro1 macro2 macro3 frailty1 frailty2

Z c

IG -0.052 0.202∗∗∗ -0.123∗∗ 1.475∗∗∗ -1.165∗∗

(0.059) (0.055) (0.069) (0.371) (0.555)
BB -0.078∗∗ 0.172∗∗∗ -0.102∗∗∗ 1.000 0.000

(0.037) (0.037) (0.040)
B -0.184∗∗∗ 0.162∗∗∗ -0.142∗∗∗ 0.970∗∗∗ -0.016

(0.035) (0.031) (0.040) (0.156) (0.158)
CCC -0.262∗∗∗ 0.073∗ -0.018 1.936∗∗∗ 1.000

(0.057) (0.050) (0.075) (0.465)

Z r 0.018 0.276∗∗∗ -0.082∗ 1.212∗∗∗ 1.065∗∗∗

(0.049) (0.046) (0.062) (0.376) (0.301)
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Estimated factors for the (3,2,0) model
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Time-varying transition probabilities
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observation-driven mixed measurement panel data model

• We have introduced a new class of models :
observation-driven mixed measurement panel data models

• Time-variation is based on the score :
the principle of the score is transparent

• Highly flexible and relatively easy to implement :
in the basics, it is just like GARCH

• We are working on theoretical foundations:
Blasques, Koopman and Lucas (2012)

• Number of applications are widespread

Thank you !
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