
Forecast Densities for Economic Aggregates from
Disaggregate Ensembles∗

Francesco Ravazzolo†

(Norges Bank)
Shaun P. Vahey‡

(ANU)

December 7, 2010

Abstract
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1 Introduction

Policymakers regularly combine the leading evidence in disaggregate variables to perform

probabilistic assessments of aggregate behaviour; see, for example, Greenspan (2004), and

the discussions by Feinstein, King, and Yellen (2004). However, the techniques used in

practice to incorporate disaggregate information into probabilistic assessments for mone-

tary policy purposes remain informal.

The scope for producing density forecasts for economic aggregates based on disaggre-

gate information has not been explored in previous economics studies. This is surprising

given the widespread recognition that evaluations of point forecast accuracy are only

relevant for highly restricted loss functions. More generally, complete probability distri-

butions over outcomes provide information helpful for making economic decisions; see,

for example, Granger and Pesaran (2000) and Timmermann (2006). Accordingly, sev-

eral central banks, including the Bank of England, Norges Bank, Sveriges Riksbank, and

the US Federal Reserve, have committed to publishing density or interval forecasts for

macroeconomic aggregates in recent years.

In contrast to the informal methods currently utilised by central bankers to incorporate

disaggregate information into probabilistic assessments, many practitioners within central

banks favour a particular formal methodology for producing point forecasts known as

the ‘bottom-up’ approach; see Lütkepohl (2009) for a survey of methods for forecasting

economic aggregates. The ‘bottom-up’ approach is a two-step procedure, in which a

system of equations is used to forecast the disaggregate series in the first step, and then

the aggregate forecast is constructed by feeding in the disaggregate forecasts (augmented

with an assumption about the time series behaviour of the index weights).

In this paper, we propose an ensemble approach to build up the evidence in disag-

gregate series to make probabilistic forecasts for an economic aggregate. We formulate

the forecasting problem as one in which a forecaster (recursively) selects a linear combi-

nation of component forecast densities to produce a forecast density for the aggregate.

Each component forecast is produced from an autoregressive linear time series model for a
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single disaggregate series. The resulting ensemble approximates the many unknown rela-

tionships between the disaggregates and the aggregate using time-varying weights across

the disaggregate forecast densities.

In using forecast combinations, our work builds on the insights of Bates and Granger

(1969) and the macroeconomic forecast evaluation studies by (among others) Stock and

Watson (2003), Guidolin and Timmermann (2009), and Clark and McCracken (2010). In

our applied work, however, we examine specifically the relationship between an economic

aggregate and disaggregate information.

A key insight of our paper is that the ‘bottom-up’ approach to aggregate forecast-

ing commonly favoured by practitioners in central banks constitutes a form of ensemble

forecasting. By this approach, the researcher considers a model space comprising a large

number of forecasting models, generated by varying measurements and/or model spec-

ifications. The predictive densities from the many misspecified forecasting models can

be combined in many ways. In this paper, we utilise the Linear Opinion Pool, following

(among others) Jore, Mitchell and Vahey (2010) in their analysis of forecasting with vec-

tor autoregressions. Regardless of the technology utilised for combination in practice, the

aim of ensemble forecasting is to approximate the unknown process with a large number

of misspecified forecasting specifications. Hence the methodology is based on a Bayesian

perspective, although the component models can be estimated and combined by either

frequentist or Bayesian methods.

Exploiting the close correspondence between the ‘bottom-up’ approach and ensemble

forecasting, we consider a number of computational techniques adapted from the meteo-

rology literature; see, for example, Gneiting and Thorarinsdottir (2010). These include:

using time-varying weights (that differ from the index weights) based on the continuously

ranked probability score; and a post-processing step to adjust the location of the forecast

densities prior to construction of the ensemble predictive densities. In our application

based on US Personal Consumption Expenditure deflator data, we assess the forecast

performance of the disaggregate ensemble utilising both of these techniques. Our ensem-

ble densities for inflation, based on 16 disaggregate series, outperform densities from both
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a first-order moving-average process for the change in aggregate inflation, and from a

simple aggregate autoregressive model, over the out of sample period 1990q1 to 2009q4.

The remainder of this paper is structured as follows. In Section 2, we describe our

methods for modelling the relationship between the economic aggregate and the disag-

gregates. In Section 3, we apply our methodology to US data to produce aggregate

inflation forecast densities from an ensemble system utilising disaggregate information.

We compare and contrast the predictive densities with those resulting from our alterna-

tive specifications which ignore disaggregate information. In the final section, we conclude

with some suggestions for further research.

2 Disaggregate Ensemble Forecasting Methodology

We begin with a discussion of the ‘bottom-up’ approach commonly used by practitioners

in central banks.

2.1 The ‘bottom-up’ Approach to Point Forecasting

Consider an economic aggregate, yτ , defined as the weighted arithmetic mean of the N

disaggregates, xi,τ :

yτ ≡
N∑
i=1

ωi,τ xi,τ , i = 1, . . . , N, τ = τ , . . . , τ (1)

with weights ωi,τ that are between 0 and 1, 0 < ωi,τ < 1, and sum to one,
∑

i ωi,τ = 1,

across the disaggregates, indexed i = 1, . . . , N . Given the weights, ωi,τ , and the disaggre-

gate series, xi,τ , equation (1) defines the economic aggregate, yτ over the evaluation period

τ = τ , . . . , τ . Forecasting the aggregate yτ conditional on the information set dated τ −1,

the researcher faces two unknowns: the disaggregate variables, xi,τ and the weights, ωi,τ .

The disaggregate forecasts are typically badly behaved in practice because the fore-

casting equations are misspecified. To illustrate, suppose the N×1 vector of disaggregates

4



xτ follows the vector autoregression (VAR) process:

xτ = a + b1xτ−1 + b2xτ−2 + · · ·+ bpxτ−p + ετ τ = τ , . . . , τ (2)

with ετ ∼ N(0,Ξτ ). Since economic theory restricts neither the interdependence be-

tween the disaggregates, nor the number of own lags for each disaggregate, the dimension

of the VAR has the potential to be very large. And as van Garderen et al (2000) and

Lütkepohl (2010) point out, there is no reason to restrict disaggregate relationships to be

linear (or even Gaussian). Even small dimensional VARs often produce weak forecasting

performance in macroeconomic time series applications, afflicted by a variety of misspeci-

fication issues; see (among others) Clark and McCracken (2010). These include unknown

non-linearities, structural breaks and measurement errors.

With specification errors in mind, many ‘bottom up’ practitioners restrict attention

to an autoregessive prediction model for each disaggregate series. For example, the first

order autoregression, AR(1), for disaggregate i:

xi,τ = ci + dixi,τ−1 + ηi,τ τ = τ , . . . , τ , (3)

with ηi ∼ N(0,Ψi). Equation (3) is a single equation from a restricted version of the

VAR given by equation (2). Although this equation is of the type typically deployed by

‘bottom-up’ practitioners, the restrictions cannot be motivated by economic theory, and

the linear Gaussian autoregressive forecasting equation is misspecified.

Nevertheless, to ‘bottom-up’ a point forecast for the economic aggregate, a system

of N equations of this form is used to generate the disaggregate point forecasts, xei,τ .

These are passed through equation (1) (with an assumption about the index weights,

ωi,τ ) to provide the point forecast for the aggregate yτ . Practitioners in central banks

typically build-up a point forecast in this manner for an economic aggregate based on one

step ahead disaggregate projections, using the previous period’s weights, ωi,τ−1; see, for

example, Marcellino, Stock and Watson (2003), and the discussions in Lütkepohl (2009,

2010).1 Forecast performance deteriorates if the weights change through time, or if the

1Marcellino, Stock and Watson (2003) refer to the ‘bottom-up’ approach (with known index weights)

as forecast ‘pooling’. Others prefer the term ‘build-up’.
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disaggregate forecasts are inaccurate.2

Despite the specification errors introduced by using equation (3), practitioners of-

ten argue that the one step ahead point forecasting performance is competitive with an

aggregate benchmark. The case with fixed and known weights is discussed by Hendry

and Hubrich (2010); Lütkepohl (2010) analyses the case with time-varying and unknown

weights. Hendry-Hubrich and Lütkepohl advocate point forecasting with an aggregate

autoregressive model augmented with lagged disaggregate terms, rather than the ‘bottom-

up’ approach.3

2.2 Density Forecasting with the Linear Opinion Pool

Unfortunately, equation (1) provides no guidance on how to produce aggregate densities

using all of the information in the disaggregate densities. Timmermann (2006) discusses

options for forecast aggregation from the perspective of the forecast combination litera-

ture. In this section, we propose using the Linear Opinion Pool (LOP) to aggregate.

Opinion pools have a long tradition in management science for expert combination

problems, where the framework is sometimes referred to as a ‘mixture of experts’. As

emphasised by Wallis (2005), the approach is particularly useful for the combination of

survey information since no in-sample information is required about the model used by

each expert; see also Mitchell and Hall (2005). Geweke (2009) discusses the differences

between LOP and mixture models, and argues that the former is more appropriate if

the model space is incomplete—where all the models considered are misspecified. Since

regardless of whether the aim is point or density forecasting of an economic aggregate,

a ‘bottom-up’ approach uses ad hoc exclusion restrictions to incorporate disaggregate

information, the model space is incomplete by construction for our application.

2Lütkepohl (2010) emphasises that the weights ωi,τ are generally time-varying in economic applica-

tions. Common causes include changes to the definition of a disaggregate, chain-linking, periodic rebasing

of indexes, benchmark revisions, and changes in the number of disaggregates.
3Although it would be interesting to pursue this approach for density forecasting, taking account of

model uncertainty, we leave this for further research.
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Given i = 1, . . . , N disaggregates (where N could be a large number), the forecaster

constructs a predictive density for the economic aggregate by taking a convex combination,

sometimes referred to as a LOP, of the disaggregate densities. The disaggregate ensemble

(DE) density is defined as:

DE = g(yτ ) =
N∑
i=1

wi,τ h(yτ | Ii,τ ), τ = τ , . . . , τ , (4)

where h(yτ | Ii,τ ) are the one step ahead forecast densities from component model (based

on disaggregate information), indexed i, i = 1, . . . , N , for the economic aggregate yτ ,

conditional on the information set Ii,τ , which contains information dated t−1 and earlier.4

The non-negative weights, wi,τ , in this finite mixture sum to unity, are positive, and vary

by recursion in the evaluation period τ = τ , . . . , τ . For convenience, we write the forecast

densities to be aggregated as h(yi,τ ).

Notice that the predictive density for the aggregate given by the LOP will be a mixture

of the forecast densities produced by the component disaggregate forecasting specifica-

tions. If all the disaggregate forecasting specifications are misspecified, there is no reason

to restrict attention to a forecast density for the aggregate, g(yτ ), to be from the same dis-

tributional family as the components themselves. (Kascha and Ravazzolo (2010) discuss

alternative opinion pools which satisfy this restriction, in which case the methodology is

said to be ‘externally Bayesian’.) Hence a useful feature of our LOP approach is that

aggregate forecast densities can capture non-Gaussian behaviour, even if the disaggregate

forecast densities are Gaussian.

Another implication of the incomplete model space is that the index weights, ωi,τ , will

not generally be useful for forecasting. For example, there is no reason to believe that

applying the index weights (or if these are unknown, lagged index weights) to forecast

densities produced from misspecified linear disaggregate forecasting specifications will

provide a suitable approximation for a non-linear aggregate process. (As we shall discuss

4Although we do not explore this issue here since the ‘bottom-up’ approach is utilised for short term

forecasting (or nowcasting) in practice, the framework can easily be extended to forecast horizons greater

than one.
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subsequently, in this paper we construct the LOP weights, wi,τ , by using measures of

out of sample density forecast performance.) Furthermore, if the models were correctly

specified, restricting attention to the index weights, ωi,τ , can induce misspecification in

the aggregate densities via LOP. To illustrate this, consider a case in which there are two

disaggregates used to construct an aggregate index via equation (1) with index weights

ω1,τ = ω2,τ = 0.5. Suppose that the two disaggregate variables follow the identical

‘true’ first-order autoregressive process with Gaussian errors given by equation (3). In

these conditions, the LOP with wi,τ = ωi,τ = 0.5, for i = 1, 2, will produce a Gaussian

ensemble forecast density for the aggregate with variance, Ψ1 = Ψ2 = Ψ. Whereas the

true aggregate index has variance 0.5Ψ.

2.3 Disaggregate Component Model Space

Having described the construction of the aggregate forecast densities, g(yτ ), we now de-

scribe how to generate the disaggregate forecast densities p(xi,τ ), and the predictives for

the aggregate h(yi,τ ) which enter the LOP, equation (4). To construct the forecast den-

sities p(xi,τ ), we adopt the disaggregate component model space commonly utilised in

the ‘bottom-up’ approach to point forecasting. Namely exactly the same N univariate

autoregressive models described by equation (3).

As we noted earlier, we interpret the N forecasting specifications used in conventional

‘bottom-up’ analyses as a ‘perturbed’ ensemble model space. In ensemble forecasting

applications, researchers consider perturbations to a single basic misspecified model.5

The perturbations might be to the measurements and/or the model space; see (among

others) Raftery et al (2005), Bao et al (2010) and Doblas-Reyes et al (2009). In our

economic application, the N disaggregate forecasting models can be trivially rewritten as

an autoregressive forecasting model for a single variable, where the variable of interest is

systematically perturbed to consider each of the candidate disaggregate variables in turn.

5Bache et al (2010) note that the technologies for ensemble density construction differ across applied

statistics fields.
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That is, equation (3) can be rewritten:

zτ = cz + dzzτ−1 + ηz,τ τ = τ , . . . , τ , z = x1,τ , . . . , xN,τ . (5)

To construct the forecast densities for the aggregate, h(yi,τ ), which are inputs into the

LOP, equation (4), we use a post-processing step for the disaggregate densities, p(xi,τ ).

This procedure adjusts the location of the disaggregate forecast densities prior to con-

structing the ensemble density forecast; see, for example, the discussions in (among oth-

ers) Atger (2003), Stensrud and Yussouff (2007), Bao et al (2010) and Gneiting and Tho-

rarinsdottir (2010). With the disaggregate forecast densities (approximately) correctly

located, the weights in the LOP are governed by shape considerations. Although more

flexible approaches are feasible, a simple bias-correction step is often sufficient to ensure

well-calibrated ensemble densities in practice; see, for example, Stensrud and Youssoff

(2007).

To implement this post-processing step, we recursively estimate the Linear Gaussian

model:

ys = a+ (xei,s) + εs, s = s, . . . , τ − 1 (6)

where xei,s is the expected value (median) of the predictive density p(xi,s) from equation

(5), for all i. Then, we define the bias-corrected disaggregate forecast density for the

aggregate:

h(yi,τ ) = â + p(xi,τ ) (7)

where â is the estimate of a in equation (6).

2.4 Ensemble Weights

Finally, to construct the ensemble forecast density for the aggregate, g(yτ ) via the LOP,

equation (4), we require weights, wi,τ . Since our methodology is motivated by the assump-

tion that the disaggregate forecasting equations are misspecified and that the ensemble

methods approximate the unknown ‘true’ specification, we propose recursively updating

the weights, wi,τ , according to the density forecasting performance of the (bias-corrected)

9



forecast predictives, h(yi,τ ).
6 Hersbach (2000), Gneiting and Raftery (2007) and Pana-

giotelis and Smith (2008) (among others) have argued that the Continuous Ranked Prob-

ability Score (CRPS), which rewards predictive densities with high probabilities near (and

at) the outturn, provides a robust metric of density forecast performance. Gneiting and

Raftery (2007) refer to the concentration of a forecast density about its central location

as ‘sharpness’, and the location as ‘distance’. The CRPS metric favours densities with

small distance and high sharpness.

The CRPS is measured as the difference between the predicted and actual cumulative

distribution. Figure 1 provides an illustrative example for a particular observation: the

CRPS measures the area between the predictive (for this example, assumed to be Gaus-

sian) and the actual cumulative distribution (marked by shading). The (positive) score

approaches zero as the predictive density converges on the true (but unobserved) density.

More formally, following Panagiotelis and Smith (2008), the CRPS of a component

density for a particular observation can be defined as:

CRPS = Eh|y − Y | − 0.5Eh|y − y′| (8)

where Eh is the expectation for the predictive h(Yτ ), y and y′ are independent random

draws from the predictive, and Y is the observed outturn. The expectation terms can

be approximated using the Monte Carlo draws from the component forecast density;

Panagiotelis and Smith (2008, equation 4.5) provide the computational steps required.

For each forecast density, h(yi,τ ), we construct the mean CRPS averaged over the

evaluation period. The weight on an individual component density i in each observation

of the evaluation period is then calculated by:

wi,τ =

[∑τ−1
s Γ(h(Yi,τ ))

]

∑N
i=1

[∑τ−1
s Γ(h(Yi,τ ))

] , τ = s, . . . , τ , . . . , τ . (9)

6In macro-econometric studies of point forecast combination with US data, it is often observed that

equal-weight combinations compare favourably with recursive-weight combinations. Jore, Mitchell and

Vahey (2010) and Garratt, Mitchell, Vahey and Wakerly (2010) show that result does not generalise to

forecast densities.
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Figure 1: CRPS

Note: The figure shows the cumulative distribution of a normal density with zero mean and unit

variance, N(0,1), and the cumulative distribution of the realised value 0. The coloured area measures

the CRPS.

with Γ is the inverse of the mean CRPS, 0 ≤ Γ ≤ ∞, and higher scores are preferred.

2.5 Methodological Summary and Illustrative Simulations

Our disaggregate ensemble methodology can be summarised as follows. For each obser-

vation in the forecaster’s evaluation period, we estimate N univariate time series repre-

sentations, one for each disaggregate. The ‘fit’ of each bias-corrected component forecast

density is assessed with the CRPS, and used to construct weights for the ensemble fore-

cast density. These weights vary through the evaluation period. In this manner, we

approximate the forecast densities for the true, but unknown, relationships between the

disaggregates and the aggregate.

To illustrate how the ensemble system reacts to time variation in the weights, ωi,τ ,

and the parameters of the disaggregate forecasting equations, equation (3), we describe
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eight simulation exercises.7

We begin by describing the basic case, exercise 1. We simulate two disaggregate vari-

ables, each of which follows a first-order autoregressive model, AR(1) with Gaussian error,

given by equation (3). The aggregate index, yt, satisfies equation (1) for two disaggregates

(i = 1, 2), with index weights ωi = 0.5. Each simulation has 1000 replications. Using a to-

tal sample of 120 observations (indexed by t = 1, . . . , 120) in each simulation, we construct

out of sample disaggregate forecasts for t = 41, . . . , 120. We estimate the disaggregate

models using a Bayesian AR(1) with non-informative priors, and an expanding window of

observations for in-sample estimation. (The predictive densities follow the t-distribution,

with mean and variance equal to OLS estimates; see, for example, Koop (2003, chapter

3) for details.) Out of sample forecast densities for t = 41, . . . , 120 are passed through

the LOP, using a 20-period training window to initialise the ensemble weights. A mov-

ing window of 20 observations is used to both bias-correct the disaggregate densities and

to construct the ensemble weights for LOP. Hence the out of sample evaluation for the

ensemble starts in t = τ = 61 and ends in τ = 120. We forecast the aggregate using an

aggregate AR(1) specification as a benchmark forecasting model.

In the seven subsequent simulation exercises, we explore the implications of introducing

specification errors to the forecasting system. These include evolving index weights, and

various forms of structural breaks in the disaggregate forecasting specifications. In each

simulation, the disaggregate ensemble and the benchmark aggregate AR(1) model ignores

the time variation in the ‘true’ specification so that we can study the impacts of unknown

specification errors.

2. The index weight ω1 follows an autoregressive process, such that the weight is bounded

between [0.25,0.75], and the weights sum to one.

3. As exercise 2 except that each disaggregate has a single break in the mean at observation

t = 20.

4. As exercise 3 except that each disaggregate has two breaks in the mean, the first at

7In these simulations, we work with a fixed and small number of disaggregates for illustrative purposes.

We do not assess the gains from increasing the number of component models.
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observation t = 20, the second at t = 60.

5. As exercise 2 except that each disaggregate has a single break in the error variance at

observation t = 20.

6. As exercise 5 except that each disaggregate has two breaks in the error variance, the

first at observation t = 20, the second at t = 60.

7. As exercise 2 except that each disaggregate has a single break both the mean and the

error variance at observation t = 20.

8. As exercise 7 except that each disaggregate has two breaks in both the mean and the

error variance, the first at observation t = 20, the second at t = 60.

To check that our results in exercises 2 through 8 are not sensitive to the assumption

that the index weights are time-varying, we repeated exercises 2-8 with constant weights.

The results of these simulations are quantitatively similar to exercises 2-8 and so are not

reported. That is, the time variation in the index weights has negligible impacts on the

performance of the disaggregate ensemble relative to the aggregate benchmark.

To judge forecasting performance, we use the average Logarithmic Score over the

evaluation period, τ = 61 to τ = 120. The Logarithmic Score of the ith density forecast,

ln g(Yτ | Ii,τ ), is the log of the probability density function g(. | Ii,τ ), evaluated at the

outturn Yτ . Mitchell and Wallis (2010) provide a recent discussion of scoring rules and the

justification for testing relative density forecasting performance from the perspective of

the Kullback-Leibler Information Criterion (KLIC). Gneiting and Raftery (2007) analyse

the relationships between scoring rules and Bayes factors. A higher average Logarithmic

Score denotes better density forecasting performance. To facilitate comparisons with point

forecasting performance, we also provide statistics for the root mean square forecast error

(RMSFE). For both measures of forecast performance, we provide histograms based on

the 1000 repetitions for each simulation exercise.
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Figure 2: Simulation results
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Note: The figures show histograms of the RMSFE’s and LS’s for the AR model and the DE, the mean

of the RMSFE’s and LS’s for the AR model (red lines) and the mean of the RMSFE’s and LS’s for the

DE (red dashed lines) for different simulation exercises.
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Note: See footnote in Figure 2.
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There are three striking features from our simulations. First, regardless of which case

we consider, the disaggregate ensemble (DE) is never inferior to the aggregate benchmark

forecasting model (AR) in terms of the average Logarithmic Score across the 1000 repli-

cations. Second, the biggest differences in density forecasting performance arise in cases

where the disaggregate forecasting specifications exhibit multiple structural breaks (espe-

cially in the means). In particular, in exercises 4 and 8. Third, despite its performance in

density forecasting, the disaggregate ensemble has a marginally weaker point forecasting

performance, indicated by the RMSFE.8

3 Application: forecasting inflation for the US

In our forecasting US inflation application, we consider US Personal Consumption Expen-

diture deflator (PCE) data. We construct a disaggregate ensemble using an evaluation

period from 1975q1 to 2009q4, and then examine the calibration of the ensemble aggregate

forecast densities using probability integral transforms, PITS, at the end of the evaluation.

We also examine forecast performance relative to a number of aggregate benchmarks. We

stress that our focus in this example is the predictive performance of the ensemble. We

do not aim to select a preferred single disaggregate predictor of aggregate inflation from

the (likely) misspecified disaggregate components.

We begin our analysis by describing the US data. Then we describe our disaggregate

ensemble, aggregate benchmarks, density evaluation methods, and results.

8We hypothesise that a more sophisticated post-processing step would lead to better point forecasting

performance. However, there are many feasible specifications to explore including centring the disag-

gregate ensemble on benchmark aggregate models, and Hendry-Hubrick and Lütkepohl aggregate-with-

disaggregates specifications. We leave this avenue to be explored in subsequent research.
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3.1 Data

The dataset contains time series for the disaggregate components of the PCE. The data

are available on the Bureau of Economic analysis http://www.bea.gov/national/nipaweb.9

The PCE data permit breakdowns at various levels of disaggregation. We emphasise that,

in principle, our methodology could be applied to any level of disaggregation. In our

application, we illustrate our technique with 16 disaggregates. These are: Motor vehicles

and parts, Furnishings and durable household equipment, Recreational goods and vehicles,

Other durable goods, Food and beverages, Clothing and footwear, Gasoline and other

energy goods, Other nondurable goods, Housing and utilities, Health care, Transportation

services, Recreation services, Food services and accommodations, Financial services and

insurance, Other services, and Final consumption expenditures of nonprofit institutions

serving households. For all inflation series, the PCE aggregate and its disaggregates,

we work with the quarterly growth rates (calculated as 100 times the log difference in

the price levels). Clark (2006) documents both the considerable variation in the mean

and volatility of disaggregate PCE variables through time, and the heterogeneity across

disaggregates.

3.2 Disaggregate Ensemble and Aggregate Specifications

The ensemble forecast densities for aggregate inflation use equations (1)-(9) described

above. We start our in-sample estimation with 1975q1 and end in 2009q4. With our eval-

uation period (τ) from 1990q1 (τ) to 2009q4 (τ), the period from 1985q1 to 1989q4

comprises a ‘training period’ to initialise the ensemble weights. The bias-correction

step and ensemble combinations are based on a rolling window of 20 quarters, denoted

s = τ − 20, . . . , τ − 1, for the results reported below. (Using an expanding window for

bias-correction and combination gave some degradation in relative performance but the

qualitative results are unchanged.)

9To our knowledge, the disaggregate data used in this study are not available on a real-time basis,

although Croushore (2009) discusses the revisions in aggregate PCE.
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The 16 disaggregate (component) forecasting equations each utilise an AR(2) specifi-

cation, estimated by Bayesian methods, using non-informative priors and a rolling window

of 40 observations. (Using an AR(4) disaggregate forecasting equation gives qualitatively

similar performance.) The predictive densities follow the t-distribution, with mean and

variance equal to OLS estimates; see, for example, Koop (2003, chapter 3) for details.10

In addition to our disaggregate ensemble, DE, we also evaluate the predictive densities

from two time series models for aggregate inflation. The first uses a linear model for the

aggregate, that is, using a linear autoregressive model for aggregate PCE inflation, with

two lags, AR(2). We use uninformative priors for the AR(2) parameters with an rolling

window of 40 observations.11

The second aggregate variant uses a a first-order moving average process for the change

in inflation. Clark (2010) reports that this model outperforms AR benchmarks in terms of

US inflation density forecasting. Following Clark (2010), we use a 40 observation moving

window for in-sample estimation of this aggregate model.

3.3 Density Evaluation

Following (among others) Jore, Mitchell and Vahey (2010), we evaluate the ensemble pre-

dictive densities using a battery of (one-shot) tests of absolute forecast accuracy, relative

to the ‘true’ but unobserved density. Like Rosenblatt (1952) and Diebold, Gunther and

Tay (1998), we utilize the probability integral transforms, PITS, of the realisation of the

variable with respect to the forecast densities. A forecast density is preferred if the density

is correctly calibrated, regardless of the forecasters loss function. The PITS are:

zτ =

∫ yτ

−∞
g(u)du.

10In an early version of the paper, we investigated a time-varying parameter autoregressive model for

the disaggregates. This gave very little improvement relative to the constant parameter disaggregate

ensemble reported here.
11We experimented with aggregate AR models of order one through four but found little variation in

performance.
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The PITS should be both uniformly distributed, and independently and identically dis-

tributed if the forecast densities are correctly calibrated. Hence, calibration evaluation

requires the application of tests for goodness-of-fit and independence. Given the large

number of bias-corrected component forecast densities under consideration in the ensem-

ble, we do not allow for estimation uncertainty in the components when evaluating the

PITS.

The goodness-of-fit tests employed include the Likelihood Ratio (LR) test proposed

by Berkowitz (2001), the Anderson-Darling test, and the Pearson (χ2) test used by Wallis

(2003). Our Berkowitz test is a three degrees of freedom variant, with a test for indepen-

dence, where under the alternative zτ follows an AR(1) process. The Anderson-Darling

(AD) test for uniformity, a modification of the Kolmogorov-Smirnov test, gives more

weight to the tails of the forecast density. The Pearson (χ2) tests divides the range of the

zτ into eight equiprobable classes and tests for uniformity in the histogram. We also test

directly for independence of the PITS using a Ljung-Box (LB) test, based on autocor-

relation coefficients up to four. A well-calibrated ensemble should give high probability

values for all four of these tests—implying the null hypothesis of no calibration failure

cannot be rejected.

Turning to our analysis of relative predictive accuracy, we consider a Kullback-Leibler

Information Criterion (KLIC) based test, utilising the expected difference in the Loga-

rithmic Scores of the candidate forecast densities; see, for example, Bao, Lee and Saltoglu

(2007), Mitchell and Hall (2005) and Amisano and Giacomini (2007). Suppose there

are two density forecasts, g(yτ | I1,τ ) and g′(yτ | I2,τ ), and consider the loss differen-

tial dτ = ln g(Yτ | I1,τ ) − ln g′(Yτ | I2,τ ). The null hypothesis of equal accuracy is

H0 : E(dτ ) = 0. The sample mean, dτ , has under appropriate assumptions the lim-

iting distribution:
√
T (dτ − dτ ) → N(0,Ω). The Logarithmic Score of the ith density

forecast, ln g(Yτ | Ii,τ ), is the log of the probability density function g(. | Ii,τ ), evaluated

at the outturn Yτ . In our LS test of relative forecast performance, we abstract from the

estimation procedure used to generate the forecast densities. Mitchell and Wallis (2010)

discuss the value of information-based methods for evaluating forecast densities that are
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well-calibrated on the basis of PITS tests.

3.4 Results

Before considering the density evaluations for our disaggregate ensemble, we summarize

the point forecast performance. The disaggregate ensemble (DE) is outperformed by

both aggregate specifications, the AR(2), and the IMA in terms of root mean squared

forecast error (RMSFE). For the AR(2) benchmark, the raw RMSFE is 0.303. The other

specifications give figures approximately 13 percent higher. Stock and Watson (2007)

discuss the difficulty of outperforming simple benchmarks in terms of RMSFE with data

that include the Great Moderation data; see also Groen, Paap and Ravazzolo (2009) for

similar results.12

The evaluation of the forecast densities are presented in table 1. The three rows refer

to the disaggregate ensemble, DE, the aggregate autoregressive benchmark, AR(2), and

the IMA, respectively. The six columns of table 1 report the p-values for the four PITS

tests (Berkowitz LR test, the Anderson-Darling AD test, the χ2, the LB test), together

with the Logarithmic Scores (averaged over the evaluation period), and the Logarithmic

Score test for density forecasting performance, relative to the AR(2) benchmark.

Looking at the DE results shown in the top row, we see that the null hypothesis of no

calibration failure cannot be rejected at the 5 percent significance level for all of the four

individual diagnostic tests, marked in bold. We note that each of these diagnostic tests

for calibration is conducted on an individual basis. A 5 percent significance level on each

individual test would imply a Bonferroni-corrected p-value of 5/4=1.25 percent (reported

as 0.0125 in the table).

The aggregate specifications, shown in the remaining two rows of table 1, display a

number of instances of calibration failure. The AR(2) benchmark, first row, fails three

12More sophisticated post-processing step would likely lead to better point forecasting performance for

US data. Bache, Mitchell, Ravazzolo and Vahey (2010) adapt the methods presented in this paper to

Norwegian data and find that the disaggregate ensemble outperforms standard aggregate benchmarks in

terms of RMSFE.
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Table 1: Forecast density performance, 1990q1 - 2009q4

LR3 AD χ2 LB LS LS test

DE 0.051 0.097 0.408 0.520 0.064 0.000

Individual models

AR2 0.000 0.000 0.000 0.504 -0.465

IMA 0.014 0.000 0.000 0.871 -0.095 0.000

Note: The column LR is the Likelihood Ratio p-value of the test of

zero mean, unit variance and independence of the inverse normal cu-

mulative distribution function transformed PITS, with a maintained

assumption of normality for transformed PITS. AD is the p-value

for the Anderson-Darling test for uniformity of the pits. The small-

sample (simulated) 5% p-values computed assuming independence of

the PITS for the Anderson-Darling test is 2.502. χ2 is the p-value

for the Pearson chi-squared test of uniformity of the PITS histogram

in eight equiprobable classes. LB is the p-value from a Ljung-Box

test for independence of the PITS. A bold number indicates that

the null hypothesis of a correctly specified model cannot be rejected

at 5% significance level for LR, AD, χ2 and LB. LS is the average

Logarithmic Score over the evaluation period. A bold number in the

final column indicates that the null of the LS test of equal density

predictive accuracy relative to the AR(2) benchmark is rejected at

the 5% significance level.
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diagnostic tests, all with three p-values below 1 percent. The more flexible aggregate

specification, IMA, fails two tests at the 1 percent level.

Figure 3 plots the PITS histograms for the three candidates, the DE, the AR(2) and

the IMA. The histograms for the AR(2) and the IMA display severe departures from

uniformity. The DE histogram is more evenly spread across the decile counts, although

visual inspection suggests calibration could be improved in both cases.

Turning to the Logarithmic Scores of the forecast densities, shown in the sixth column

of table 1, we see that the disaggregate ensemble DE records the best relative perfor-

mance, followed by the IMA. The LS test p-value (marked in bold) indicates that the

null hypothesis of equal forecast performance can be rejected at the 1 percent significance

level for the DE relative to the (rolling window) AR(2) aggregate benchmark. The IMA

aggregate specification also improves on the AR(2) benchmark at the one percent level.

An LS test of the DE relative to the (rolling window) IMA confirms the superiority of the

DE at the 10 percent significance level.

To shed further light on the contribution of disaggregate information, figure 4 plots

the weights in the disaggregate ensemble DE. As we might expect, given the univariate

nature of the components, there is uncertainty about the relative importance of disaggre-

gate components through the evaluation. The weights lie in the (approximate) interval

[0.01, 0.11] throughout the evaluation, with frequent changes in the identity of the most

important disaggregate.

In figure 5, we plot the median from our disaggregate ensemble, together with ag-

gregate PCE inflation. The 5th, 25th, 50th, 75th and 95th percentiles from the ensemble

density are also shown. The plot shows that the median of the DE is considerably less

volatile than the actual aggregate inflation series. The central mass of the predictive

density declines steadily from around 1.0 percent in 1990 to around 0.5 percent in 2000.

Thereafter, the median progressively increases (with some reversals) to peak (locally) in

2008. The recent slump sees the median forecast drop to the levels seen in 1990 again,

but still misses considerably the 2008q4 observation. The DE performs somewhat better

for several spikes in aggregate inflation which occurred between 2000q1 and the recent
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economic crisis, reflecting the importance of levels shifts in the disaggregates for food and

energy.

Typically the difference between the percentiles shown varies very little through the

evaluation, although there is greater dispersion (typically) in the pre-2000 forecast den-

sities, typically remaining close to 0.4 percentage points. Furthermore, the probability

that (quarterly) inflation is less than zero is rarely more than 5 percent, with 2008q4 an

obvious exception.

We draw the following conclusions from our forecast density evaluations. First, the

disaggregate ensemble performs well in both tests of absolute and relative density fore-

casting performance. Second, as Jore, Mitchell and Vahey (2010) and Clark (2010) em-

phasise, although simple autoregressive models of aggregate inflation produce accurate

point forecasts, the benchmark can be bettered in terms of forecast densities. Third,

the disaggregate ensemble approach betters an IMA specification in density forecasting

performance.

4 Conclusions

In this paper, we have proposed a methodology for constructing forecast densities for

economic aggregates based on disaggregate evidence using an ensemble predictive sys-

tem. In our application, we have shown that the disaggregate ensemble approach delivers

well-calibrated forecast densities for US PCE aggregate inflation from 1990q1 to 2009q4.

Alternative forecasting specifications using only aggregate information failed to match the

density forecasting performance of our disaggregate ensemble.

Our applied work indicates that including disaggregate information via an ensem-

ble system improves probabilistic forecasts for US aggregate inflation. Our results also

confirm formally the view endorsed by many economic policymakers that disaggregate

information can be helpful for forecasting. However, our methodology differs markedly

from the standard ‘bottom-up’ approach in providing probabilistic information to poli-

cymakers, rather than point forecasts. Future work should investigate the robustness of
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this performance advantage in a variety of macroeconomic applications. For example,

forecasting Euro-area output growth and unemployment.
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Figure 4: DE weights
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Note: The figures plot the weights given by disaggregate ensemble DE. The disaggregate order 1-16 for

DE corresponds to the order in Section 3.1.
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Figure 5: DE interval forecasts

Note: The black solid lines represent the 5%, 25%, 50%, 75%, and 95% percentiles of the of the

predictive density given by disaggregate ensemble DE and the red solid line shows the the actual

inflation.
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