Modeling Financial Crises Mutations

Bertrand Candelon[†] Elena-Ivona Dumitrescu^{†‡} Christophe Hurlin[‡] Franz Palm[†]

†Maastricht University and ‡University of Orléans

Seminar National Bank of Serbia 2011

Introduction

- → Importance of financial crises (Latin America, in Asia, Scandinavia, ERM, Russia, Asian, Lehman brothers, Greece, Ireland, Portugal...
- \rightarrow Modeling crisis is a crucial issue for the analysis of the crisis, Optimal policy set up, Early Warning Systems,...

Introduction - Modeling Methods

How to model a financial crisis?

→ **Static models** - rich literature (Kaminski et al.,1998; Berg and Patillo,1999; Kumar et al.,2003 Bussiere and Fratzscher, 2006; etc.)

\rightarrow Dynamic models

- Duration model; (Tudela, 2005)
- Markov Switching model; (Abiad et al. 2003).

Recently, Dynamic probit model:

"Currency crises early warning systems: why they should be dynamic" (2010) B.Candelon, E. Dumitrescu and C. Hurlin.

Introduction - Economics 1

What is a financial crisis?

Frederic Mishkin: Nonlinear disruption,..., so that financial markets are unable to channel funds to those with the most productive investment opportunities.

- Currency crisis.
- Banking crisis.
- Sovereign debt crisis.

Introduction - Economics 2

From one crisis to another one, examples..

- Banking to sovereign debt in Europe. (Candelon and Palm, 2010)
- ▶ Banking to currency (twin crisis), Ecuador 1999,... (Glick and Hutchinson, 1999, Reinhart and Rogoff, 2010)

Introduction - Economics 3

... and Economic theory (Balance sheet approach)

Originality

Dynamic EWS models

- \rightarrow Dynamic model with binary crisis variables.
- ightarrow Multivariate to take into account for the potential crisis mutation

Sketch of the presentation

1. Methodology:

- The Model.
- Exact Maximum Likelihood Estimation.

2. Empirical Application:

- Data.
- Defining the crisis periods.
- Bivariate vs multivariate model.
- The Ecuador example: conditional probability and IRF.

Take Aways

- 1. MDP is a much more parcimonious model.
- 2. MDP shows better in-sample properties as it takes into account crisis mutation.
- \rightarrow It should be implemented as often as possible.

Methodology- The Model 1

$$y_{m,t}^* = \pi_{m,t} + \epsilon_{m,t}, \tag{1}$$

and

$$y_{m,t} = \mathbb{1}(y_{m,t}^* > 0),$$
 (2)

with $m \in \{c, b, s\}$, $\pi_{m,t}$ being the expected value of $y_{m,t}$ that may depend on covariates which vary across markets, country and time and with $E(\epsilon_{m,t}|\pi_{m,t})=0$, $Var(\epsilon_{m,t}|\pi_{m,t})=\Gamma$, $Cov(\epsilon_{m,t},\epsilon_{m',t}|\pi'_{m,t},\pi_{m',t'})=\omega_{mm'}$ when i=i', t=t' and zero whenever $i\neq i'$ and $t\neq t'$.

Methodology- The Model 2

$$y_{m,t}^* = \alpha_m + x'_{m,t-1}\beta_m + \sum_{m'} y_{m',t-1}\Delta_{m,m'} + \sum_{m'} \Gamma_{m,m'}\pi_{m',t-1} + \varepsilon_{m,t}$$

$$y_{m,t} = \mathbb{1}(y_{m,t}^* > 0).$$
(3)

Interpretation for persistence and causality:

- \rightarrow Persistence: diagonal terms \triangle (non-linear) and Γ (linear).
- ightarrow Causality (Granger): off-diagonal terms of Δ and Γ .

Methodology- the Model 3

Finally, the disturbances $\varepsilon_t = [\varepsilon_{c,t} \ \varepsilon_{b,t} \ \varepsilon_{s,t}]'$ are trivariate normally distributed with a 3 × 3 symmetric matrix $\tilde{\Omega}$:

$$\tilde{\Omega} = \begin{pmatrix} \sigma_c^2 & \rho_{bc}\sigma_b\sigma_c & \rho_{sc}\sigma_c\sigma_s \\ \rho_{bc}\sigma_b\sigma_c & \sigma_b^2 & \rho_{sb}\sigma_b\sigma_s \\ \rho_{sc}\sigma_c\sigma_s & \rho_{sb}\sigma_b\sigma_s & \sigma_s^2 \end{pmatrix}, \tag{4}$$

where $\rho_{m,m-1}$ represents the correlation coefficients. It is also assumed that $\tilde{\varepsilon}_t$ is i.i.d so that the covariance matrix for all T observations is given by $V(\tilde{\varepsilon}) = I_N \otimes \tilde{\Omega}$, $\tilde{\Omega}$ being a flexible covariance matrix.

Methodology- the Model 4

1.
$$\pi_t = \alpha + x'_{t-1}\beta + y'_{t-1}\Delta + \Gamma'\pi_{t-1}. \tag{5}$$

2. $\pi_t = \alpha + \mathbf{x}'_{t-1}\beta, \tag{6}$

3.
$$\pi_{t} = \alpha + x'_{t-1}\beta + y'_{t-1}\Delta, \tag{7}$$

4. $\pi_{t} = \alpha + X'_{t-1}\beta + \Gamma'\pi_{t-1}, \tag{8}$

Methodology- Exact ML 1

The FIML estimates are obtained by maximizing the log-likelihood:

$$LogL(y|z,\theta;\Omega) = \sum_{t}^{T} Log\Phi_{3,\varepsilon}(w_t; Q_t\Omega Q_t)$$
 (9)

where Q_t is a diagonal matrix whose main diagonal elements are $q_{m,t}=2y_{m,t}-1$ and thus depends on the realization or not of the events $(q_{m,t}=1 \text{ if } y_{m,t}=1 \text{ and } q_{m,t}=-1 \text{ if } y_{m,t}=0, \forall m \in \{c,b,s\})$. Besides, the elements of the vector $w_t=[w_{1,t},...,w_{3,t}]$ are given by $w_{m,t}=q_{m,t}\pi_{m,t}$.

Methodology- Exact ML 2

Ideas for the empirical procedure:

- → Huguenin, Pelgrin and Holly (2009) show in a static probit framework that simulated methods lead to bias So Exact ML.
- $\to \Phi_{3,\varepsilon}(w_t; Q_t\Omega Q_t)$ is some a simple, double and triple integrals. Triple integrale can be decompose in a non-unique way into double integrals.
- ightarrow Integrals are numerically evaluated using Gauss-Legendre Quadrature rule over bounded intervals.

Application- Data

Table 1 – Database

Country	Bivariate model	Trivariate model
Argentina	February 1988 - May 2010	December 1997 - May 2010
Brazil	September 1990 - May 2010	December 1997 - May 2010
Chile	January 1989 - May 2009	May 1999 - May 2010
Colombia	February 1986 - August 2009	December 1997 - August 2009
Ecuador	January 1994 - November 2007	December 1997 - November 2007
Egypt	February 1986 - June 2009	July 2001 - June 2009
El Salvador	January 1991 - November 2008	April 2002 - November 2008
Indonesia	January 1989 - August 2009	May 2004 - August 2009
Lebanon	January 1989 - April 2010	April 1998 - April 2010
Malaysia	January 1988 - March 2010	December 1997 - March 2010
Mexico	January 1988 - May 2010	December 1997 - May 2010
Peru	January 1990 - May 2010	December 1997 - May 2010
Philippines	January 1995 - February 2008	December 1997 - February 2008
South Africa	January 1988 - August 2009	December 1997 - August 2009
Turkey	January 1988 - May 2010	December 1997 - May 2010
Venezuela	February 1986 - November 2009	December 1997 - November 2009

Note: Data availability.

1- The Currency Crises

Market pressure index (MPI) KLR(1998)

$$KLRm_{n,t} = \frac{\Delta e_{n,t}}{e_{n,t}} - \frac{\sigma_e}{\sigma_r} \frac{\Delta r_{n,t}}{r_{n,t}} + \frac{\sigma_e}{\sigma_i} \Delta i_{n,t},$$
 (10)

Currency crisis variable:

$$CC_{n,t} = \begin{cases} 1, & \text{if } \mathsf{KLRm}_{n,t} > 1.5\sigma_{\mathsf{KLRm}_{n,t}} + \mu_{\mathsf{KLRm}_{n,t}} \\ 0, & \text{otherwise.} \end{cases}$$
 (11)

2- The Banking Crises

Banking pressure index (BPI) von Hagen and Ho (2004)

$$BPI_{n,t} = \frac{\Delta \gamma_{n,t}}{\sigma_{\Delta \gamma}} + \frac{\Delta r_{n,t}}{\sigma_{\Delta r}},$$
(12)

Banking crisis variable:

$$BC_{n,t} = \begin{cases} 1, & \text{if } IMP_{n,t} > P_{BPI,90,n} \\ 0, & \text{otherwise.} \end{cases}$$
 (13)

3- The Sovereign Debt Crises

Pescatori and Sy (2007) use the CDS spread.

Sovereign debt crisis variable:

$$SC_{n,t} = \begin{cases} 1, & \text{if CDSspread}_{n,t} > \textit{Kernel Threshold}_n \\ 0, & \text{otherwise.} \end{cases}$$
 (14)

Table 2 – Percentage of crisis periods

	Bivariat	e model	Trivariate model			
	Currency crisis	Banking crisis	Currency crisis	Banking crisis	Debt crisis	
Argentina	5.13	8.90	4.00	6.67	10.0	
Brazil	3.77	7.19	0.00	3.33	2.67	
Chile	6.07	10.0	5.79	5.79	3.31	
Colombia	4.95	9.90	9.22	12.8	0.00	
Ecuador	5.73	9.93	6.67	10.8	6.67	
Egypt	6.76	9.96	4.17	7.30	7.30	
El Salvador	3.65	9.85	0.00	0.00	2.50	
Indonesia	5.30	9.90	0.00	14.0	6.25	
Lebanon	9.62	9.96	1.38	8.97	2.76	
Malaysia	3.10	10.0	4.05	6.08	4.73	
Mexico	6.50	9.93	0.00	9.33	0.00	
Panama	0.00	9.89	0.00	6.38	0.00	
Peru	4.45	8.22	0.00	10.7	0.00	
Phillipines	4.90	9.80	5.69	6.50	3.25	
South Africa	6.71	9.89	7.09	7.80	4.26	
Turkey	4.80	8.56	4.00	6.67	0.00	
Venezuela	7.33	10.1	4.17	7.64	2.78	

Note: A percentage of crisis superior to 5% is represented in bold.

Application- Bivariate vs trivariate DPM 1

Table 3 - Bivariate Analysis

			onths	6 months		12 months	
Country		θ	Ω	θ	Ω	θ	Ω
Argentina	currency banking	[+ +]	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$	[· +]	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$. +	
Chile	currency banking	$\left[\begin{array}{cc} + & \cdot \\ \cdot & \cdot \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$	$\left[\begin{array}{cc} \cdot & \cdot \\ \cdot & \cdot \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$	$\left[\begin{array}{cc} \cdot & - \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$
Ecuador	currency banking	$\left[\begin{array}{cc} \cdot & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & . \\ . & 1 \end{array}\right]$	$\left[\begin{array}{cc} \cdot & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc}1&.\\.&1\end{array}\right]$	$\left[\begin{array}{cc} \cdot & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & . \\ . & 1 \end{array}\right]$
Egypt	currency banking	$\left[\begin{array}{cc} + & \cdot \\ - & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & . \\ . & 1 \end{array}\right]$	$\left[\begin{array}{cc} + & \cdot \\ - & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & - \\ - & 1 \end{array}\right]$	$\left[\begin{array}{cc} + & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & - \\ - & 1 \end{array}\right]$
Lebanon	currency banking	$\left[\begin{array}{cc} + & \cdot \\ - & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & . \\ . & 1 \end{array}\right]$	$\left[\begin{array}{cc} \cdot & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$	$\left[\begin{array}{cc} + & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$
Mexico	currency banking	$\left[\begin{array}{cc} + & . \\ . & + \end{array}\right]$	$\left[\begin{array}{cc}1&.\\.&1\end{array}\right]$	+ .	$\left[\begin{array}{cc}1&.\\.&1\end{array}\right]$	$\left[\begin{array}{cc} + & . \\ . & . \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$
South Africa	currency banking	$\left[\begin{array}{cc} + & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & . \\ . & 1 \end{array}\right]$	$\left[\begin{array}{cc} + & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc}1&.\\.&1\end{array}\right]$	$\left[\begin{array}{cc} \cdot & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & . \\ . & 1 \end{array}\right]$
Venezuela	currency banking	$\left[\begin{array}{cc} + & . \\ . & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$	+ . . +	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$	$\left[\begin{array}{cc} \cdot & \cdot \\ \cdot & + \end{array}\right]$	$\left[\begin{array}{cc} 1 & + \\ + & 1 \end{array}\right]$

Application- Bivariate vs trivariate DPM 2

Table 4 – Trivariate Analysis

		3 m	onths	6 months		
Country		θ	Ω	θ	Ω	
Ecuador	currency banking sovereign	+ . + . +	1 . . 1 . 1		1 . . 1 . 1	
South Africa	currency banking sovereign	$\left[\begin{array}{ccc} + & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & + \end{array}\right]$	$\left[\begin{array}{ccc} 1 & . & + \\ . & 1 & . \\ + & . & 1 \end{array}\right]$	$\left[\begin{array}{ccc} + & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & + \end{array}\right]$	$\left[\begin{array}{ccc} 1 & . & + \\ . & 1 & . \\ + & . & 1 \end{array}\right]$	

Note: Two different lags of the dependent variable are used, namely 3 and 6 months. ' θ ' stands for the parameters of the lagger crisis variables, while Ω represents the variance-covariance matrix. $\Lambda'+'/^{1/2}$ sign means that the coefficient is significant and positive/ negative, while a '.' indicates its non-significance. For example, in the case of Ecuador, 3 months, sovereign debt crise have a positive and significative impact on the probability of occurrence of currency crises.

Conclusion

- 1. This paper develops a multivariate dynamic probit model for financial crisis model,
- 2. It allows to model the potential mutation of a crisis into another one.
- 3. We also propose an exact Maximum Likelihood estimation.
- 4. MDP shows better in-sample properties as it takes into account crisis mutation.
- → Powerful tool for real life implementation...