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Introduction 
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 Market risk assessment typically relies on quantile-based 
measures of risk: 

o  Incoherent measures (e.g. Value at Risk)  

o  Coherent measures (e.g. Expected Shortfall) 

 Traditional methods of VaR and ES estimation: 

o  Analytical method  

o  Historical simulation 

o  Monte Carlo simulation 

 Problem with traditional methods:  

o  They try to reconstruct the entire distribution of returns.  

o  However, extreme losses matter the most.  
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Extreme Value Theory (EVT) 
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 Characterizes the tail behavior of the distribution of 
returns.   

 By focusing on extreme losses, the EVT successfully 
avoids tying the analysis down to a single parametric 
family fitted to the whole distribution.   

 The empirical results show that VaR and ES estimates 
obtained by using EVT-based models outperform the 
ones based on analytical and historical methods. 

o  McNeil (1997), Nyström & Skoglund (2002), Harmantzis, Chien & 
Miao (2005), and Marinelli, d’Addona & Rachev (2007)  
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Univariate EVT: Theorem 1 
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  Fisher & Tippett (1928), Gnedenko (1943) 

Let {Xi}n
i=1 be a set of n independent and identically distributed random vari-

ables with distribution function F and suppose that there are sequences of
normalization constants, {an} and {bn}, such that, for some non-degenerated
limit distribution F ∗, we have

lim
n→∞

P
(

Mn − bn

an
≤ x

)
= lim

n→∞
[F (anx + bn)]n = F ∗(x), x ∈ R.

Then, there exist ξ ∈ R, µ ∈ R and σ ∈ R+ such that F ∗(x) = Γξ,µ,σ(x) for any
x ∈ R, where

Γξ,µ,σ(x) := exp

[
−

(
1 + ξ

x− µ

σ

)−1/ξ

+

]

is the so-called generalized extreme value (GEV) distribution.
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Univariate EVT: Theorem 2 
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 Picklands (1975) 

Let {Xi}n
i=1 be a set of n independent and identically distributed random vari-

ables with distribution function F . Define

Fu(y) := P (X ≤ u + y | X > u) =
F (u + y)− F (u)

1− F (u)
, y > 0

to be the distribution of excesses of X over the treshold u. Let xF be the end
of the upper tail of F , possibly a positive infinity. Then, if F is such that the
limit given by Theorem 1 exists, there are constants ξ ∈ R and β ∈ R+ such
that

lim
u→xF

sup
u<x<xF

|Fu(x)−Gξ,β(x− u)| = 0,

where

Gξ,β(y) := 1−
(

1 + ξ
y

β

)−1/ξ

+

(1)

is known as the generalized Pareto (GP) distribution. NBS Research Seminar 
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Multivariate EVT 
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 The results of the univariate EVT hold for i.i.d. random 
numbers.  

 Multidimensional limiting relations are also available 
(e.g. Smith 2000), but model complexity increases 
greatly with the number of risk factors.  

 Joint distributions of extreme returns often modeled by 
copulas.  

 The proposed multivariate EVT method is based on 
separate estimations of the univariate model.  

o  Works with n orthogonal series of conditional residuals that are 
approximately i.i.d.  

NBS Research Seminar 
Belgrade, Dec 17, 2010 



Estimation methodology 
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 Choose a reasonable treshold u.  

 Use one of the conventional methods to fit the interior 
of the distribution (e.g. historical simulation).  

 Fit the upper and lower tail separately with GP 
distribution:  

o  Using the Hill estimator (Danielsson & de Vries, 1997), or  

o  Maximum likelihood estimator   

 Nyström and Skoglund (2002) show that the ML 
outperforms the Hill estimator, and is almost insensitive 
to the choice of treshold u.  
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Estimation methodology 
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Estimation methodology 

8 

 Total distribution beyond the treshold is given by 

 From the estimated parameters of the GP distribution 
we find 

where + (–) stands for the upper (lower) tail.  

F (x) = (1− F (u))Gξ,β(x− u) + F (u)

V̂aRq± = u± ±
β̂±

ξ̂±

[(
T

Nu±

(1− q±)
)−bξ±

− 1

]

ÊSq± =
1

1− ξ̂±

(
V̂aRq± ± β̂± − ξ̂±u±

)
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Orthogonalization 
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  In n dimensions, use the principal components of the 
unconditional VCV matrix 

 This gives a set of (at most) n orthogonal standardized 
coordinates. 

 Univariate EVT can be applied separately on each. 

Λ := diag(λ1, λ2, . . . , λn)
V∞ = PΛP′

L := PΛ1/2

zt = L−1εt

E (zt) = 0
var (zt) = 1n
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Filtering 
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 Log-returns: ARMA(r,m) 

 Conditional variance: GJR-GARCH(p,q) 

yt,i = µi +
r∑

s=1

bs,iyt−s,i + εt,i +
m∑

s=1

θs,iεt−s,i

E (εt|Ft−1) = E (εt) = [0 0 . . . 0]′ =: 0,

var (εt|Ft−1) = E (εtε
′
t|Ft−1) =: Vt

Vt = Ω +
p∑

s=1

AsEt−s +
p∑

s=1

ΘsIt−sEt−s +
q∑

s=1

BsVt−s

Et := εtε
′
t

It := diag(sgn(−εt,1)+, sgn(−εt,2)+, . . . , sgn(−εt,n)+)
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Filtering 
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  In the basis of principal components: 

 Estimate n separate univariate GJR-GARCH(p,q) 
models:  

V̂t = Ω̂ +
p∑

s=1

ÂsÊt−s +
p∑

s=1

Θ̂sÎt−sÊt−s +
q∑

s=1

B̂sV̂t−s

Êt := L−1EtL−1′ = ztz′t
Ît := L−1ItL−1′ = diag(sgn(−zt,1)+, sgn(−zt,2)+, . . . , sgn(−zt,n)+)

V̂t,i = Ω̂i +
p∑

s=1

Âs,iÊt−s,i +
p∑

s=1

Θ̂s,iÎt−s,iÊt−s,i +
q∑

s=1

B̂s,iV̂t−s,i
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GMM estimation 
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 Use GMM to avoid:  

o  having a unique likelihood function  

o  specific distributional assumptions  

 The estimator (Skoglund, 2001): 

et :=
[
zt z2

t − V̂t

]′

gt(ψ) := F′
t(ψ)et

E [gt(ψ)] = 0

m(ψ) :=
1
T

T∑

t=1

gt(ψ)

ψ̂ = arg min
ψ

m(ψ)′ W m(ψ)
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Forecasting 
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 Confidence interval for the forecast of the value of i-th 
principal component, h steps ahead: 

 Forecasts of multivariate VaR and ES: 

z±t+h,i = F−1
i (q±)

√
V̂t+h,i

VaRq± = a′L
[
E (ŷt+h|Ft) + z±t+h

]

ESq± = a′Lz̃±t+h

z̃±t+h,i = F̃−1
i (q±)

√
V̂t+h,i

F̃−1
i (q±) =

1
1− ξ±

[
F−1

i (q±)± β± − ξ±u±
]
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Data 
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 Daily averages of four interbank exchange rates  

o  Base currency: USD  

o  Term currencies: EUR, GBP, JPY, CHF  

 Sample 1: January 4, 1999 - December 31, 2007  

 Sample 2: January 4, 1999 – September 30, 2008  

 Source: Thomson’s Datastream  
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Parameters of the GP 
distribution 
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Upper tail
Parameter PC 1 PC 2 PC 3 PC 4

ξ̂+ −0.1096 0.0544 0.0058 0.1804
(0.0612) (0.0703) (0.0755) (0.0752)

β̂+ 0.6397 0.5153 0.5724 0.5386
(0.0573) (0.0497) (0.0575) (0.0536)

Lower tail
Parameter PC 1 PC 2 PC 3 PC 4

ξ̂− −0.2030 0.0570 −0.0293 0.0239
(0.0575) (0.0714) (0.0572) (0.0625)

β̂− 0.7013 0.6765 0.6379 0.6031
(0.0605) (0.0658) (0.0556) (0.0548)
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Tails of the standardized 
residuals 
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First principal component 
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Tails of the standardized 
residuals 
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Second principal component 
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Tails of the standardized 
residuals 
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Third principal component 
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Tails of the standardized 
residuals 
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Fourth principal component 
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VaR and ES 
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 One-step-ahead forecasts for an equally-weighted 
portfolio (January 1, 2008) 

Upper tail
CL 0.90 0.95 0.99 0.999
VaR 0.5294 0.6947 1.0750 1.6101
ES 0.7284 0.8924 1.2694 1.7994

Lower tail
CL 0.90 0.95 0.99 0.999
VaR −0.4212 −0.5923 −0.9203 −1.2495
ES −0.6790 −0.8251 −1.1026 −1.3743
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Backtesting 
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Backtesting: Number of 
violations by quantiles 
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Upper tail
Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 109 56 12 0
Normal 144 89 31 16
t 121 49 11 0
HS 235 166 70 21

Expected 123.9 61.95 12.39 1.239

Lower tail
Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 88 48 9 1
Normal 118 67 19 8
t 86 40 7 0
HS 219 142 54 28

Expected 123.9 61.95 12.39 1.239 NBS Research Seminar 
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Backtesting: Kupiec test 23 

Upper tail
Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 2.0665 0.6207 0.0125 2.4792
(< 10−4) (< 10−4) (< 10−4) −−

Normal 3.4620 11.0174 19.9238 52.5198
(< 10−4) (0.4564) (0.0626) (∼ 1.0)

t 0.0759 3.0602 0.1637 2.4792
(< 10−4) (< 10−4) (0.2022) −−

HS 90.1083 128.6208 129.9539 79.6643
(< 10−4) (0.0142) (∼ 1.0) (∼ 1.0)

Lower tail
Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 12.7273 3.5725 1.0354 0.0494
(< 10−4) (< 10−4) (0.0006) (0.1760)

Normal 0.3167 0.4226 3.0626 16.3572
(< 10−4) (< 10−4) (< 10−4) (0.9625)

t 14.2719 9.3110 2.8099 2.4792
(< 10−4) (< 10−4) (0.0980) −−

HS 67.6349 81.0498 77.1940 121.6632
(< 10−4) (< 10−4) (0.9791) (∼ 1.0)
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Backtesting: Pearson's test 
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Method Lower tail Upper tail

EVT 0.4170 1.3142
(0.0189) (0.1410)

Normal 38.5252 7.5773
(∼ 1.0) (0.8917)

t 2.2298 2.0934
(0.3064) (0.2814)

HS 123.1067 146.7974
(∼ 1.0) (∼ 1.0)
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Summary of the method 25 

original multivariate time series 

PCA 

orthogonal coordinates,  
reduced dimensionality  

univariate  
ARMA – GARCH 

orthogonal and i.i.d. coordinates,  
reduced dimensionality  

univariate 
EVT 

historical 
simulation 

ML model parameters closed-form  
expressions 

VaR and ES  
forecasts 

GMM 
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Conclusion 
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 The proposed approach employs the notion that some 
key results of the univariate EVT can be applied 
separately to a set of orthogonal i.i.d. random variables.  

 Such random variables can be constructed from the 
principal components of ARMA-GARCH conditional 
residuals of a multivariate return series.   

 The estimation is free of any unnecessary distributional 
assumptions.   

 The proposed approach tends to yield more precise 
VaR and ES forecasts than the usual methods based on 
conditional normality, conditional t-distribution or 
historical simulation, without losing efficiency.  
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