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Abstract
This paper develops an efficient multivariate extreme-value approach to calcu-

lating Value at Risk (VaR) and expected shortfall. It is based on the notion

that some key results of the univariate extreme value theory can be applied sep-

arately to a set of orthogonal random variables, provided they are independent

and identically distributed. Such random variables can be constructed from the

principal components of ARMA-GARCH conditional residuals of a multivari-

ate return series. The model’s forecasting ability is then tested on a portfolio

of foreign currencies. The results indicate that the generalized Pareto distri-

bution of peeks over treshold of residuals performs well in capturing extreme

events. In particular, model backtesting shows that the proposed multivariate

approach yields more precise VaR forecasts than the usual methods based on

conditional normality, conditional t-distribution or historical simulation, while

maintaining the efficiency of conventional multivariate methods.
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1 Introduction

Sometimes extreme times indeed call for extreme measures. Events like financial crises

and market crashes have increased awareness of the need to quantify risk and assess

the probability and extent of extremely large losses. Currently, the most popular tool

used by financial institutions to measure and manage market risk is Value at Risk

(VaR). VaR refers to the maximum potential loss over a given period at a certain

confidence level. Originally intended as a reporting tool for senior management, it

started becoming prevalent in the risk management world in 1994, when JPMorgan

published the methodology behind its RiskMetrics system. Soon after, books by

Jorion (1996) and Dowd (1998) introduced VaR to academic parlance and gave it

more formal theoretical ground. VaR quickly entered other core areas of banking

such as capital allocation, portfolio optimization or risk limitation. With its increasing

importance, VaR was easily adopted by the regulators as well. In particular, the Basel

II capital requirements for market risk are based on VaR.

In spite of being established an industry and regulatory standard, VaR is often

criticized for not being a coherent risk measure.1 Namely, VaR is not strictly sub-

aditive, since there might be situations in which VaR(X + Y ) > VaR(X) + VaR(Y ),

as shown for example in Artzner et al. (1999), Acerbi & Tasche (2002) or Breuer

et al. (2008). Furthermore, VaR completely ignores statistical properties of losses

beyond the specified quantile of the profit-loss distribution, i.e. the tail risk. In order

to overcome these drawbacks, Artzner et al. (1997) proposed the Expected Shortfall

(ES) as an alternative risk measure. It is defined as the conditional expectation of

loss beyond a fixed level of VaR. As such, ES takes into account tail risk and satisfies

1A coherent risk measure satisfies properties of monotonicity, sub-additivity, homogeneity and
translational invariance.
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the sub-aditivity property, which assures its coherence as a risk measure.

VaR and ES are usually estimated in analytical, simulation or historical framework.

Analytical approach relies upon the assumption that returns or return innovations

follow a known distribution, such as normal. Since financial time series commonly

exhibit significant autocorrelation and heteroskedasticity, one typically models the

conditional rather than the unconditional distribution of returns. However, many

empirical results, such as McNeil (1997), da Silva & de Melo Mendez (2003) and

Jondeau & Rockinger (2003), show that the normality assumption fails in explain-

ing extreme events, even when autocorrelation and heteroskedasticity are taken into

account. This follows from the fact that the high-frequency empirical returns are

characterized by heavier tails than those implied by the normal distribution, as well

as by a substantial skewness. In order to overcome these problems, a leptokurtic

and/or skewed distribution, such as (standard or skewed) Student’s t, may be used

instead. However, empirical results based on the t-distribution have shown only a

limited success. Alternatively, we can estimate VaR and ES via a simulation. The

simulation method is quite useful, if not the only one available, when the underly-

ing risk factors have non-linear payoffs, which is the case with options, for example.

However, any simulation has to be based on a pre-specified model of dynamics of the

underlying factors, thus the VaR and ES estimates will critically rely on a correct

model specification with properly and precisely calibrated parameters.

To avoid ad-hoc assumptions of (un)conditional return distribution or dynamics

of the underlying risk factors, the historical simulation (HS) is often used as an al-

ternative. The HS employs historical data from recent past, thereby allowing for the

presence of heavy tails without making assumptions about the probability distribu-

tion or dynamics of returns. This non-parametric approach is conceptually simple
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as well as easy to implement. Moreover, it entirely overcomes the problem of model

risk. Unfortunately, it suffers from some serious drawbacks. First, any extrapola-

tion beyond past observations will be inaccurate, especially if the historical series is

relatively short. If we try to mitigate this problem by considering longer samples,

we will practically neglect the time-varying nature of volatility, as well as volatility

clustering. In that case, the HS approach would not properly capture the risk in a

sudden period of extremely high volatility – the VaR and ES estimates would change

only marginally.

Beyond these traditional approaches, there is an alternative which uses the Ex-

treme Value Theory (EVT) to characterize the tail behavior of the distribution of

returns. By focusing on extreme losses, the EVT successfully avoids tying the analy-

sis down to a single parametric family fitted to the whole distribution. Although there

is a history of use of EVT in the insurance industry, its application to market risk cal-

culations began about a decade ago. McNeil (1999), Bensalah (2000), Smith (2000),

Nyström & Skoglund (2002b) and Embrechts et al. (2008) survey the mathemati-

cal foundations of EVT and discuss its applications to both financial and insurance

risk management. The empirical results show that EVT-based models provide more

accurate VaR estimates, especially in higher quantiles. For example, McNeil (1997),

Nyström & Skoglund (2002b), Harmantzis et al. (2005) and Marinelli et al. (2007)

show that EVT outperforms the estimates of VaR and ES based on analytical and

historical methods.

EVT approach thus seems like a natural choice for risk measurement: its implemen-

tation is relatively easy and is based on a few assumptions required for the asymptotics

to work. Regrettably, this elegance comes with a price, as the straightforwardness is

limited to the univariate EVT. In practice, the number of assets in a typical portfolio
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is large. We usually deal with a multitude of risk factors and hence our measurement

method requires a multivariate approach. However, defining a multivariate model

for the evolution of risk factors under extreme market conditions has so far been

a daunting task. A seemingly obvious technique involves a multivariate version of

the EVT, based on the multidimensional limiting relations (see Smith (2000)), but

model complexity increases greatly with the number of risk factors. Alternatively,

the joint distribution of returns can be seen as a product of marginal distributions

and a copula. McNeil & Frey (2000) and Nyström & Skoglund (2002a), for example,

describe the copula approach to assessment of the extreme co-dependence structure

of risk factors. Not only that this technique introduces an additional model risk, in-

herent in the assumption of a specific analytical form of the co-dependence function,

but it also becomes quite intractable with increase in dimensionality. Moreover, a

typical copula method for multivariate EVT, such as the one described in Nyström

& Skoglund (2002a), requires an additional simulation step in order to retrieve the

innovations from the joint distribution, given the fitted marginals and parameters of

the copula.

This paper introduces a multivariate EVT method for risk measurement that is

based on separate estimations of the univariate model. A key assumption of the

univariate EVT is that extreme returns are independent and identically distributed.

Instead of estimating the joint n-dimensional distributions (using copulas or other-

wise), the proposed method works with n orthogonal series of conditional residuals

that are approximately independent and identically distributed. These residuals are

obtained from the principal components of the joint return series that are free of any

autocorrelation, heteroskedasticity and asymmetry. The latter is achieved by assum-

ing that the joint return process follows a stationary n-dimensional model from the

ARMA-GARCH family. To render the method free of any unnecessary distributional
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assumption, the ARMA-GARCH parameters are estimated by a generalized method

of moments.

As an illustration, the technique is applied to a sequence of daily interbank spot

exchange rates of Euro, British Pound, Japanese Yen and Swiss Franc with respect to

the U.S. Dollar. The VaR and ES estimates are compared to the actual losses. The

results indicate that the method performs well in jointly capturing extreme events

in all four series. It also yields more precise VaR and ES estimates and forecasts

than the usual methods based on conditional normality, conditional t-distribution or

historical simulation.

The remainder of the paper is organized as follows: Section 2 presents the theo-

retical background behind the EVT approach and the estimation methodology used

in this paper. Section 3 describes the data and provides an example of estimation.

Section 4 shows the back-tests of the model and its forecasting ability, and compares

these results to the ones corresponding to the usual methods applied in risk modeling.

Concluding remarks are given in Section 5.

2 Theoretical Framework and Estimation Method-

ology

2.1 Theoretical Framework

This subsection outlines some basic results of the univariate extreme value theory.

First, I formally define the two risk measures used throughout the paper, VaR and
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ES. Next, I present two most important results of EVT that concern the asymptotic

distributions of the order statistics and of the exceedances over a given treshold.

Definition 1. Let {Xi}ni=1 be a set of independent and identically distributed random

variables with distribution function

F (x) := P{Xi ≤ x}

for any i. Value at Risk is the q-th quantile of the distribution F :

VaRq := F−1(q),

where q ∈ (0, 1) and F−1 is the inverse of F . Similarly, the Expected Shortfall is the

expected value of X, given that VaR is exceeded:

ESq := E[X|X > VaRq].

In order to compute VaR and ES we have to be able to assess the upper and lower

tails of the distribution function F . Hence, it is natural to consider the order statistics

Mn = max{X1, X2, . . . , Xn},

mn = min{X1, X2, . . . , Xn}.

Both Mn and mn are random variables that depend on the length n of the sample. In

analogy with the Central Limit Theorem, we will be interested in the asymptotic be-

havior of these random variables as n→∞. Sincemn = −max{−X1,−X2, . . . ,−Xn}

it is sufficient to state all the results for Mn, that is, focus on observations in the upper

tail of the underlying distribution. The results for the lower tail will be straightfor-
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ward to generalize.

The following theorem is a limit law first derived heuristically by Fisher & Tippett

(1928) and later from a rigorous standpoint by Gnedenko (1943).

Theorem 1. Let {Xi}ni=1 be a set of n independent and identically distributed ran-

dom variables with distribution function F and suppose that there are sequences of

normalization constants, {an} and {bn}, such that, for some non-degenerated limit

distribution F ∗, we have

lim
n→∞

P
(
Mn − bn
an

≤ x

)
= lim

n→∞
[F (anx+ bn)]n = F ∗(x), x ∈ R.

Then, there exist ξ ∈ R, µ ∈ R and σ ∈ R+ such that F ∗(x) = Γξ,µ,σ(x) for any

x ∈ R, where

Γξ,µ,σ(x) := exp

[
−
(

1 + ξ
x− µ
σ

)−1/ξ

+

]

is the so-called generalized extreme value (GEV) distribution.

The GEV was first proposed by von Mises (1936) in this form. The 1/ξ is re-

ferred to as the tail index, as it indicates how heavy the upper tail of the underlying

distribution F is. When ξ → 0, the tail index tends to infinity and Γξ,µ,σ(x) →

exp [− exp (−(x− µ)/σ)].

The sign of ξ defines the three fundamental types of extreme value distributions:

• If ξ = 0, the distribution is called the Gumbel distribution. In this case, the

distribution spreads out along the entire real axis.

• If ξ > 0, the distribution is called the Fréchet distribution. In this case, the

distribution has a lower bound.

• If ξ < 0, the distribution is called the Weibull distribution. In this case, the
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distribution has an upper bound.

Many of the well known distributions may be divided between these three classes of

GEV distribution according to their behavior in the tail. For example, normal, gamma

and log-normal distributions converge to Gumbell distribution (ξ = 0); Student’s t,

Pareto, log-gamma and Cauchy converge to Fréchet distribution (ξ > 0); uniform

and beta converge to Weibull distribution (ξ < 0). The subset of all distributions F

that converge to a given type of extreme value distribution is called the domain of

attraction for that type. Some characterizations of a domain of attraction are given

in Nyström & Skoglund (2002b). More details on GEV distribution and domains of

attraction can be found, for example, in Embrechts et al. (2008).

EVT is sometimes applied directly – for example, by fitting GEV to the maxima

of the series, see Smith (2000). An alternative approach is based on exceedances over

treshold. The following theorem, first stated by Picklands (1975), gives the asymptotic

form of conditional distribution beyond a very high treshold.

Theorem 2. Let {Xi}ni=1 be a set of n independent and identically distributed random

variables with distribution function F . Define

Fu(y) := P (X ≤ u+ y | X > u) =
F (u+ y)− F (u)

1− F (u)
, y > 0

to be the distribution of excesses of X over the treshold u. Let xF be the end of the

upper tail of F , possibly a positive infinity. Then, if F is such that the limit given by

Theorem 1 exists, there are constants ξ ∈ R and β ∈ R+ such that

lim
u→xF

sup
u<x<xF

|Fu(x)−Gξ,β(x− u)| = 0,
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where

Gξ,β(y) := 1−
(

1 + ξ
y

β

)−1/ξ

+

(1)

is known as the generalized Pareto (GP) distribution.

There is a close analogy between Theorems 1 and 2 because ξ is the same in both,

and there is a one-to-one correspondence between GEV and GP distributions, given

by

1−Gξ,β(x) = − ln Γξ,0,σ(x),

see Balkema & de Haan (1974), Davison & Smith (1990) and Nyström & Skoglund

(2002b).

The application of EVT involves a number of challenges. First, the parameter

estimates of the GEV and GP limit distributions will depend on the number of ex-

treme observations used. Second, the choice of a treshold should be large enough to

satisfy the conditions that permit the application of Theorem 2, i.e. u → xF , while

at the same time leaving a sufficient number of observations to render the estimation

feasible. There are different methods of making this choice, and some of them are

examined in Bensalah (2000). Finally, Theorems 1 and 2 hold only if the extreme ob-

servations X are independent and identically distributed. Therefore, we cannot apply

the results of EVT to returns on financial assets directly, since a typical financial time

series exhibits autocorrelation and heteroskedasticity. Moreover, the EVT approach

described in this subsection applies only to a single time series, whereas in practice

we often deal with multidimensional series. The following subsection describes how

to overcome these issues.
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2.2 Estimation Methodology

Estimating Independent Univariate Excess Distributions

Theorem 2 states that for a large class of underlying excess distributions (namely,

those satisfying Theorem 1), the distribution of exceedances over treshold converges

to a generalized Pareto as the treshold is raised. Thus, the GP distribution is the

natural model for the unknown excess distribution. The excess distribution above the

threshold u may be therefore taken to be exactly GP for some ξ and β:

Fu(y) = Gξ,β(y), (2)

for any y satisfying 0 ≤ y < xF − u.

Assuming that we have a set of realizations {zt,i}Tt=1, we can choose a sensible

treshold u and estimate parameters ξ and β. If there are Nu out of a total of T

data points that exceed the threshold, the GP will be fitted to the Nu exceedances.

In the literature, several estimators have been used to fit the parameters of the GP

distribution. Two most popular ones are the maximum likelihood (ML) and the

Hill estimator. The ML estimator is based on the assumption that if the tail under

consideration exactly follows a GP distribution, then the likelihood function can be

written in a closed form. The estimators of the parameters ξ and β are then obtained

using the standard ML approach. Provided that ξ > −1/2 the ML estimator of the

parameters is consistent and asymptotically normal as the number of data points

tends to infinity. The alternative is based on a combination of the ML method and

the following semi-parametric result.
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Theorem 3. Suppose {Xt}Tt=1 are independent and identically distributed random

variables with distribution function F , and

lim
k→∞

1− F (kx)

1− F (k)
= x−1/ξ, x ∈ R+, ξ > 0.

Then, for x > 0,

lim
T→∞

P
(
MT − bT

aT
≤ x

)
= Γξ,0,1(x),

where bT = 0 and aT = F (1− 1/T ).

When estimating ξ one may, assuming a priori that ξ > 0, conjecture that the tail

behaves as in Theorem 3 and obtain an ML estimator of the parameter ξ. This

estimator is referred to as the Hill estimator, see Danielsson & de Vries (1997).

Nyström & Skoglund (2002b) have shown that ML typically performs better than

the Hill estimator in terms of relative bias and relative standard deviation. In addi-

tion, ML has a useful property of being almost invariant to the choice of threshold.

This is in sharp contrast to the Hill estimator which is very sensitive to this choice.

Also, the Hill estimator is designed specifically for the heavy-tailed case whereas the

ML method is applicable to light-tailed data as well.

Estimating Tails of Univariate Distributions

By setting x = u+ y and combining Theorem 2 and expression (2) we can write

F (x) = (1− F (u))Gξ,β(x− u) + F (u),
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for x > u. This formula shows that we may easily interpret the model in terms of the

tail of the underlying distribution F (x) for x > u. Thus, the only additional element

we require to construct a tail estimator is an estimate of F (u). For this purpose, I use

the method of historical simulation (HS) and take the obvious empirical estimator,

F̂ (u) = 1−Nu/T . By setting a threshold at u, we are assuming that we have sufficient

observations exceeding u for a reasonable HS estimate of F (u), but for observations

beyond u the historical method would be unreliable. Alternatively, we can find Nu

that is closest to a predetermined F (u). Thus, for example, in a sample of T = 1000

observations, F̂ (u) = 0.90 will correspond to Nu = 100. The treshold is then set to

u = X900, if {Xt}Tt=1 are ordered from the lowest to the highest.

Combining the HS estimate F̂ (u) with the ML estimates of the GP parameters,

we obtain the tail estimator:

F̂ (x) = 1− Nu

T

(
1 + ξ̂

x− u
β̂

)−1/bξ
, x > u. (3)

Note that when the scale parameter β tends to infinity, Gξ,β(·) vanishes and the tail

estimator converges to the empirical one for any x. Thus, the tail estimator in (3)

can be viewed as the HS estimator augmented by the tail behavior, which is captured

by the GP distribution.

Estimating Univariate VaR and ES

For a given upper-tail probability q > F (u) the VaR estimate is calculated by inverting

the tail estimation formula (3) to get

V̂aRq = u+
β̂

ξ̂

[(
T

Nu

(1− q)
)−bξ
− 1

]
. (4)
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This is a quantile estimate, where the quantile is an unknown parameter of an un-

known underlying distribution. The confidence interval for V̂aRq can be obtained

using a method known as the profile likelihood.

Once we have V̂aRq, the point estimator of ES can be obtained from

ÊSq =
1

1− ξ̂

(
V̂aRq + β̂ − ξ̂u

)
, (5)

(see, for example, McNeil (1999)). As the tail index increases (equivalently, as ξ̂ → 0),

the ES becomes progressively greater than VaR.

It is now easy to generalize the results for the VaR and ES such that they hold in

the lower tail as well. Let u+ ≡ u be the upper-tail treshold, and let the lower-tail

treshold u− be defined symmetrically, that is by F (u−) = 1 − F (u+). Then, for a

given upper-tail probability q+ > F (u+) or a given lower-tail probability q− < F (u−)

the general form of the VaR estimate is

V̂aRq± = u± ±
β̂±

ξ̂±

[(
T

Nu±

(1− q±)

)−bξ±
− 1

]
, (6)

where the subscript + (−) refers to parameters in the upper (lower) tail. Similarly,

the general form of the ES estimate is

ÊSq± =
1

1− ξ̂±

(
V̂aRq± ± β̂± − ξ̂±u±

)
. (7)

It is important to stress that the interpretation of VaR and ES may vary, depending

on the meaning of the set of variables {Xt}Tt=1. Usually, in the risk modeling context

these variables represent profits and hence are expressed in monetary units.
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Orthogonalization

The ultimate goal is to apply the EVT approach to a portfolio consisting of n assets.

Before we can use any of the results of EVT outlined in Subsection 2.1, we have to

construct a set of cross-sectionally uncorrelated random variables. A natural choice

is to work with the principal components of the unconditional covariance matrix of

the log returns.

Definition 2. Define εt to be an n-dimensional random vector whose components

εt,i have zero mean for each i = 1, 2, . . . , n. Let V∞ = E(εtε
′
t) be the n-by-

n unconditional covariance matrix of εt. Denote by Λ the diagonal matrix of the

eigenvalues of V∞,

Λ := diag(λ1, λ2, . . . , λn),

ordered by descending values, λ1 ≥ λ2 ≥ . . . ≥ λn. (The matrix V∞ is positive

definite, hence λi > 0 for any i.) Let P be the corresponding orthogonal matrix of

normalized eigenvectors, so that the eigenvalue decomposition of V∞ is given by

V∞ = PΛP′.

Let further

L := PΛ1/2.

In other words, L is an n-by-n matrix whose singular value decomposition is given

by the product of an orthogonal matrix P, a diagonal matrix Λ1/2, and the n-by-n

identity matrix 1n. Then,

zt = L−1εt, (8)

is called the vector of principal components of εt, for any t. The i-th element of the

vector zt is called the i-th principal component of εt.
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Note that

E (zt) = L−1E (εt) = 0

and

var (zt) = E (ztz
′
t)

= L−1E (εtε
′
t) L−1′

= L−1V∞L−1′

= 1n, (9)

since V∞ = LL′. Hence, zt are cross-sectionally uncorrelated and each component

has a unit variance.

Since εt = Lzt, each coordinate of εt can be written as a linear combination of the

principal components,

εt,i =
n∑
j=1

Lijzt,j, i = 1, 2, . . . , n,

where Lij are the elements of L. The fraction of total variation in εt explained by

the j-th principal component is

λj∑n
k=1 λl

.

This property leads to another convenient feature of the principal component ap-

proach. Namely, if low-ranked components do not add much to the overall explained

variance, which is often the case in financial time series, we can work with a reduced

number of m principal components, where m < n. The first m components will then
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explain ∑m
j=1 λj∑n
k=1 λl

. 1

of the variation in εt. In that case, L is replaced by a n-by-m matrix Lm, where

Lm := PmΛ1/2
m , (10)

Pm is a n-by-m matrix of the first m normalized eigenvectors, and

Λ := diag(λ1, λ2, . . . , λm)

is a diagonal matrix of the first m eigenvalues. The m-dimensional vector of the first

m principal components of εt is then given by

zt = L−1
m εt, (11)

for any t.

Filtering

Orthogonalization transforms a cross-sectionally correlated series into a set of uncor-

related ones. We also have to filter out any serial correlation and volatility clustering.

As a net result we will obtain sequences of orthogonal, serially uncorrelated and

identically distributed conditional residuals.

Specifically, I will assume that for each asset i = 1, 2, . . . , n the log returns yt,i :=
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ln(St,i/St−1,i) at time t follow an ARMA(r,m) process

yt,i = µi +
r∑
s=1

bs,iyt−s,i + εt,i +
m∑
s=1

θs,iεt−s,i. (12)

For each t and i, the residuals εt,i are serially uncorrelated random variables with a

continuous density function of zero mean. Conditionally on the information available

at t− 1, the vector of residuals,

εt := [εt,1 εt,2 . . . εt,n]′,

has a zero mean and a covariance matrix Vt. That is,

E (εt|Ft−1) = E (εt) = [0 0 . . . 0]′ =: 0, (13)

var (εt|Ft−1) = E (εtε
′
t|Ft−1) =: Vt, (14)

where, for any t, the matrix Vt is positive definite and measurable with respect to the

information set Ft−1, a σ-field generated by the past residuals {εt−1, εt−2, . . . , ε1}.

Note that the vector form of the ARMA process given by equation (12) then reads

yt = µ+
r∑
s=1

bsyt−s + εt +
m∑
s=1

θsεt−s, (15)

where yt and µ are vectors with elements indexed by i = 1, 2, . . . , n, while

bs := diag (bs,1, bs,2, . . . , bs,n)

θs := diag (θs,1, θs,2, . . . , θs,n)

are n-by-n diagonal matrices of ARMA coefficients.

To capture the volatility clustering, I will assume that the conditional covariance
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matrix follows a model from the GARCH family. The standard GARCH(p,q) model

is sufficient to capture most of the clustering, and – to some extent – excess kurtosis.

However, it has a drawback of being symmetric, in the sense that negative and positive

shocks have the same impact on volatility. There is a strong empirical evidence that

the positive and negative innovations to returns exhibit different correlations with

innovations to volatility. This asymmetry can be captured, for example, by assum-

ing that the conditional residuals follow an asymmetric distribution, such as skewed

Student’s t. Alternatively, we can model the asymmetry explicitly in the equation

followed by the conditional covariance matrix. In order to keep the estimation method

free of any distributional assumptions I opt for the alternative approach. As Glosten

et al. (1993), I will assume that the conditional covariance Vt follows a multivariate

asymmetric GARCH(p,q), also known as multivariate GJR-GARCH(p,q):

Vt = Ω +

p∑
s=1

AsEt−s +

p∑
s=1

ΘsIt−sEt−s +

q∑
s=1

BsVt−s, (16)

where Ω, A1, . . . , Ap, Θ1, . . . , Θp, B1, . . . , Bq are constant, positive semidefinite

n-by-n matrices,

Et := εtε
′
t,

and

It := diag(sgn(−εt,1)+, sgn(−εt,2)+, . . . , sgn(−εt,n)+),

for any t. As usual, the coefficients in matrices As in (16) measure the extent to

which volatility shocks in previous periods affect the current volatility, while As +Bs

measure the rate at which this effect fades away. The terms proportional to matrices

Θs capture the impact of asymmetric return shocks to volatility. For any t, the
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unconditional covariance matrix of εt is given by

V∞ :=

(
1n −

p∑
s=1

(
As +

1

2
Θs

)
−

q∑
s=1

Bs

)−1

Ω.

Hence, covariance stationarity of the GJR-GARCH(p,q) process (16) is assured by

setting the matrix

1n −
p∑
s=1

(
As +

1

2
Θs

)
−

q∑
s=1

Bs

to be positive definite.

It is worth noting that there are many plausible and often implemented alternatives

to asymmetric GARCH model of Glosten et al. (1993), such as EGARCH model of

Nelson (1991). I have chosen to work with the Glosten et al. (1993) specification for

the sake of simplicity.

Cross-sectional correlations are reflected in the off-diagonal terms of matrices Vt

and Et. This in turn makes the matrices Ω, A1, . . . , Ap, Θ1, . . . , Θp, B1, . . . , Bq

non-diagonal. In total, one would have to estimate (1 + 2p + q)(n + 1)n/2 different

parameters. Clearly, this number explodes as we increase the number of assets in the

portfolio. However, this is only one facet of the problem. The other is that we cannot

apply the results of univariate EVT to conditional residuals εt,i directly.

For that matter, we can work in the orthonormal basis of principal components by

applying the linear transformation (8) to the conditional residuals εt. In the orthonor-

mal basis of principal components, equation (15) and (16) for the ARMA(r,m)–GJR-

GARCH(p, q) process then read:

ŷt = µ̂+
r∑
s=1

b̂sŷt−s + zt +
m∑
s=1

θ̂szt−s (17)
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and

V̂t = Ω̂ +

p∑
s=1

ÂsÊt−s +

p∑
s=1

Θ̂sÎt−sÊt−s +

q∑
s=1

B̂sV̂t−s, (18)

where ŷt := L−1yt for any t, µ̂ := L−1µ, and

M̂ := L−1ML−1′

for any M ∈ {b̂; Ω, A1, . . . , Ap, Θ1, . . . , Θp, B1, . . . , Bq} and any M ∈

{Vt, Et, It}t≥max{p,q}. In particular,

Êt := L−1EtL
−1′ = ztz

′
t

and

Ît := L−1ItL
−1′ = diag(sgn(−zt,1)+, sgn(−zt,2)+, . . . , sgn(−zt,n)+).

Equation (13) implies

E (zt|Ft−1) = L−1E (εt) = 0. (19)

On the other hand, let

V̂t := var (zt|Ft−1)

= E (ztz
′
t|Ft−1)

= L−1VtL
−1′

be the conditional covariance matrix of principal components. Since the principal

components zt are orthogonal, it is reasonable to assume that the matrix V̂t is di-

agonal (see, for example, Alexander (2001)). Then, the process given by equation
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(18) can be estimated separately for each principal component. This gives a set of n

independent scalar equations of the form

V̂t,i = Ω̂i +

p∑
s=1

Âs,iÊt−s,i +

p∑
s=1

Θ̂s,iÎt−s,iÊt−s,i +

q∑
s=1

B̂s,iV̂t−s,i, (20)

where, in general, M̂i := M̂ii is the i-th diagonal element of the matrix M̂, i being

1, 2, . . . , n for the first, second, . . ., n-th principal component, respectively.

Once we estimate the set of parameters {Ω̂, Â1, . . . , Âp, Θ̂1, . . . , Θ̂p, B̂1, . . . , B̂q}

we can apply the inverse transformation

Vt := LV̂tL
′ (21)

for t ≥ max{p, q}, to retrieve the series of conditional covariance matrices in the

original basis of log returns. This allows us to estimate VaR and ES in a multivariate

framework, for an arbitrary portfolio.

Note that it is straightforward to generalize the above approach to the case of

m < n principal components. Using definition (10), we can transform any n-by-n

matrix M into the basis of the first m principal components via transformation

M̂ := L−1
m ML−1′

m ,

yielding an m-by-m matrix M̂. Equations (18) and (20) maintain the same form.

22



GMM Estimation

Estimation of the GJR-GARCH(p, q) parameters in the basis of principal components

can be performed in several ways. Let us focus on the set of scalar equations (20).

Under the additional assumption of a known conditional distribution for the residuals,

it is straightforward to set up the likelihood function for the entire ARMA(r,m)–GJR-

GARCH(p, q) model. This gives the ML estimator for the set of parameters

{
µ̂, b̂1, . . . , b̂r, θ̂1, . . . , θ̂m; Ω̂, Â1, . . . , Âp, Θ̂1, . . . , Θ̂p, B̂1, . . . , B̂q

}
.

In the principal component framework, there are (1+r+m+1+2p+q)n parameters

in total to be estimated.

However, as indicated earlier, it is desirable to have an estimator which avoids spe-

cific assumptions about the conditional distribution, while maintaining the efficiency

of the ML (or quasi-ML) estimator. Such an estimator is based on the General-

ized Method of Moments (GMM). Instead of making distributional assumptions, it

proceeds by postulating conditional moments. Here, I will briefly outline its imple-

mentation. The details of the GMM approach to ARMA-GARCH models can be

found, for example, in Skoglund (2001).

For a fixed t and any principal component i define

et :=
[
zt z2

t − V̂t
]′
,

where, with a slight abuse of notation, I use zt = zt,i and V̂t = V̂t,i. Let the score be

given by

gt(ψ) := F′t(ψ)et,
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where Ft is an instrumental variable function. The GMM estimator of univariate

ARMA(r,m)–GJR-GARCH(p, q) parameters ψ is defined as

ψ̂ = arg min
ψ

m(ψ)′ W m(ψ), (22)

where

m(ψ) :=
1

T

T∑
t=1

gt(ψ)

is the sample analog of the expected score, while the weighting matrix W is a con-

sistent estimate of the inverse asymptotic covariance matrix of the score. The set of

moment conditions is given by

E [gt(ψ)] = 0.

An efficient choice of instrumental variable function and weighting matrix corre-

sponds to setting

Ft(ψ) = Σ−1
t Jt(ψ),

where Σt := var (et|Ft−1),

Jt(ψ) :=
∂et
∂ψ′

is the Jacobian matrix, and

W =
1

T

T∑
t=1

gt(ψ)gt(ψ)′,

see Newey & McFadden (1994). Standard errors can be calculated in a usual way from

a consistent estimate of the Fisher information matrix. A recursive semi-closed form

solution for gt can be found in Skoglund (2001), Nyström & Skoglund (2002b) and

Nyström & Skoglund (2002b), for a particular (and common) case of ARMA(1, 0)–

GJR-GARCH(1, 1) process.
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It is worth noting that the application of the GMM estimator requires an initial

guess on the third and fourth moments of zt. Therefore, in order to obtain an initial

estimator of the set of parameters ψ, it is convenient to use the quasi-ML estimator

to obtain the initial consistent estimates (i.e., to assume conditional normality of

residuals).

Forecasting

A one-step-ahead forecast of the transformed log return vector can be obtained from

(17):

E (ŷt+1|Ft) = µ̂+
r∑
s=1

b̂sŷt−s+1. (23)

Using the fact that principal components zt are independent, we can write the forecast

for an arbitrary time horizon h ≥ 1:

E (ŷt+h|Ft) = µ̂+
r∑
s=1

b̂sE (ŷt−s+h|Ft)

= µ̂+
h∑
s=1

b̂sŷt−s+h +
r∑

s=h+1

b̂sE (ŷt−s+h|Ft) . (24)

Equation (24) is recursive and the last term contains the forecasts for 1, 2, . . . , h−1

steps ahead.

Next, from equation (18), it follows that a one-step-ahead forecast of conditional

covariance in the basis of principal components is given by

E
(
V̂t+1|Ft

)
= V̂t+1
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= Ω̂ +

p∑
s=1

ÂsÊt−s+1 +

p∑
s=1

Θ̂sÎt−s+1Êt−s+1 +

q∑
s=1

B̂sV̂t−s+1,

since V̂t+1 is measurable with respect to the information available at t. A two-steps-

ahead forecast is

E
(
V̂t+2|Ft

)
= Ω̂ +

p∑
s=1

(
Âs +

1

2
Θ̂s

)
V̂t−s+1 +

q∑
s=1

B̂sV̂t−s+1,

which can be obtained by substituting the matrices known up until and including time

t. Iteratively, we can derive a covariance forecast for an arbitrary horizon. Applying

the inverse transformation (21), we can obtain the covariance forecast in the original

basis of log returns.

Given the upper- and lower-tail quantiles q±, the confidence interval [z−t+h,i, z
+
t+h,i]

for the forecast of the value of i-th principal component h steps ahead is given by

z±t+h,i = F−1
i (q±)

√
V̂t+h,i, (25)

where, F−1
i (·) is the inverse of the univariate probability function followed by the set

of random variables {zt,i}Tt=1. It can be obtained by inverting the tail estimator (3).

As before, V̂t+h,i stands for the i-th diagonal element of the matrix V̂t+h.

Estimating Multivariate VaR and ES

Our final goal is to estimate VaR and ES for a portfolio of n assets. Denote by a the

vector of portfolio positions, in monetary units.2 Then, h-steps-ahead portfolio VaR

2This, among other things, facilitates the treatment of short positions, when portfolio weights
may not be well defined.
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is defined by

VaRq± = a′L
[
E (ŷt+h|Ft) + z±t+h

]
, (26)

where z±t+h is the vector whose i-th component is given by (25). The intuition behind

formula (26) is the following. The first term,

a′L E (ŷt+h|Ft) = a′E (yt+h|Ft) ,

represents the expected return on the portfolio for h steps ahead. The second term

is determined by the vector Lz±t+h, which defines the confidence intervals in the n-

dimensional space of log returns. Hence, the second term a′Lz±t+h is the confidence

interval for portfolio returns around their mean, for h steps ahead and at a confidence

level defined by q±.

In analogy with equations (26) and (5), the h-steps-ahead portfolio ES is given by

ESq± = a′Lz̃±t+h, (27)

where

z̃±t+h,i = F̃−1
i (q±)

√
V̂t+h,i

and

F̃−1
i (q±) =

1

1− ξ±
[
F−1
i (q±)± β± − ξ±u±

]
.
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3 Data and Empirical Results

3.1 Data

The empirical results that follow are based on average daily interbank spot exchange

rates of Euro, British Pound, Japanese Yen and Swiss Franc with respect to the

U.S. Dollar, from January 4, 1999 to September 30, 2008, a sample of 2542 obser-

vations. The four time series were obtained from Thomson Financial’s Datastream.

Table 1 provides summary statistics for the exchange rate levels and the correspond-

ing daily log returns (in percent), computed as yt = 100 ln(St/St−1). Daily sampling

is chosen in order to capture high-frequency fluctuations in return processes that may

be critical for identification of rare events in the tails of distribution, while avoiding to

model the intraday return dynamics, abundant with spurious market microstructure

distortions and trading frictions.

I perform several preliminary test on the data. The values of skewness and kurtosis

in Table 1 indicate that both the levels and returns deviate from normality. This is

also confirmed by Jarque-Bera and Kolmogorov-Smirnov tests (not reported), whose

p-values are at most of the order of 10−3. Table 2 shows the results of Ljung-Box

Q-statistics for the autocorrelation of returns, up to order 10 (Panel A). The null

hypotheses of no autocorrelation in returns cannot be rejected. The absence of a

significant short-run return predictability is consistent with high efficiency of the

currency market. The autocorrelation in the squared returns is, on the other hand,

highly significant in all four series, indicating the presence of heteroskedasticity (Panel

B). The correlation coefficients between squared returns and their lags (not reported)

are all positive, confirming the notion of clustering – the periods of high volatility are
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Table 1: Summary Statistics

Daily interbank spot exchange rates of Euro, British Pound, Japanese Yen and Swiss
Franc with respect to the U.S. Dollar, from January 4, 1999 to September 30, 2008
(2542 observations).

Panel A: Daily exchange rate levels

Currency Mean Variance Skewness Kurtosis

EUR 1.1511 0.0376 0.2234 2.1992
GBP 1.7103 0.0376 0.0661 1.7385
JPY 0.8774 0.0030 −0.0339 2.2511
CHF 0.7380 0.0121 0.1375 2.1955

Panel B: Daily returns (percent)

Currency Mean Variance Skewness Kurtosis

EUR 0.0084 0.3539 −0.0267 4.5420
GBP 0.0040 0.2338 0.0757 4.1778
JPY 0.0026 0.3493 0.2267 4.8656
CHF 0.0088 0.4012 0.1411 4.2532

likely to be followed by high volatility.

Table 3 reports the results of the unit root tests. Both Augmented Dickey-Fuller

(ADF) and Phillips-Perron (PP) statistics indicate that the unit root hypothesis is

convincingly rejected in favor of stationary returns (the critical values of ADF and

PP statistics at 5 and 1 percent confidence are −3.41 and −3.96, respectively).
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Table 2: Autocorrelation

Ljung-Box test for autocorrelation of returns and squared returns up to 10th lag.

Panel A: Autocorrelation of returns

Currency Q statistic p-value

EUR 3.9867 0.9479
GBP 9.4858 0.4867
JPY 6.8611 0.7385
CHF 12.7326 0.2390

Panel B: Autocorrelation of squared returns

Currency Q statistic p-value

EUR 111.5435 < 10−5

GBP 105.7946 < 10−5

JPY 81.5108 < 10−5

CHF 42.7107 < 10−5

Table 3: Stationarity

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests for the presence of
unit roots, based on the regression

yt = c+ δt+ φyt−1 +
10∑
L=1

bL∆yt−L + εt,

H0 : φ = 1, δ = 0.

Currency ADF statistic PP statistic

EUR −15.8257 −50.4768
GBP −15.2648 −48.0508
JPY −14.6802 −49.2301
CHF −15.6345 −50.9751

5% crit. value −3.41 −3.41
1% crit. value −3.96 −3.96
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3.2 Empirical Results

I apply the method described in Section 2 to the exchange rate data. The ex-post anal-

ysis of autocorrelations in principal components and squared principal components

have shown that it is sufficient to use an ARMA(1, 0)–GJR-GARCH(1, 1) model to

obtain independent and identically distributed residuals. Hence, the estimation steps

are the following. First, estimate

yt = µ+ byt−s + εt. (28)

Then, calculate the unconditional variance matrix V∞ of the residuals εt and apply

the eigenvalue decomposition following Definition 2 to obtain the principal compo-

nents zt. The conditional covariance matrix of the principal components then follows

V̂t = Ω̂ + ÂÊt−1 + Θ̂Ît−1Êt−1 + B̂V̂t−1. (29)

Next, to obtain the GJR-GARCH(1, 1) parameters

ψ :=
{

Ω̂, Â, Θ̂, B̂
}
,

run the GMM estimation (22) separately for each principal component. Since there

are four exchange rates in the sample, there are 4× 4 = 16 parameters in total to be

estimated from the GMM step if we work with a full set of four principal components.

Once we have the ARMA(1, 0)–GJR-GARCH(1, 1) parameters, we can compute

the forecasts, as well as VaR and ES for an arbitrary portfolio, following formulas

(26) and (27). Note that, in general, parameter estimates change in time as we move

through the time series. Hence, a proper dynamic method for VaR and ES forecasting
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would involve regular updating of parameters.

I illustrate the method by running a dynamic estimation over the sample period.

To have sufficient observations for the estimation runs, I start from January 1, 2004.

For each of the remaining 1239 daily observations, I calculate one-step-ahead forecasts

of VaR and ES. As an example, the estimation details are shown in Tables 4–7 and

Figures 1–4, for January 1, 2008.

Table 4 shows the summary of the principal component analysis. The first principal

component explains almost 70 percent of joint variations in the four exchange rates.

Table 4: Principal Components

Variance explained by each of the four principal components (PCs). Estimation
period is January 4, 1999 – December 31, 2007.

PC 1 PC 2 PC 3 PC 4

Eigenvalue 0.9283 0.2682 0.1036 0.0269

Variance explained 0.6995 0.2021 0.0781 0.0202
Cumulative 0.6995 0.9017 0.9798 1.0000

Table 5 summarizes the results of the univariate parameter estimation. For each

principal component i, the table shows the values of ARMA(1,0)–GJR-GARCH(1,1)

parameters obtained by the GMM estimation, along with their standard errors.

Clearly, mean stationarity is satisfied, since |̂bi| < 1 for every i. Also, it is easy

to check that the GARCH parameters are very close but still within the bounds of

covariance-stationary regime, as Âi + Θ̂i/2 + B̂i < 1. The constant terms Ω̂i ap-

pear to be insignificant; however, the corresponding unconditional variances V̂∞,i =

Ω̂i/[1− (Âi + Θ̂i/2 + B̂i)] are significant.

Table 6 displays the estimates of the upper- and lower-tail parameters of the uni-
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Table 5: ARMA-GARCH Estimates

Parameter estimates in the ARMA(1,0)–GJR-GARCH(1,1) model, in the basis of
principal components. Estimation period is January 4, 1999 – December 31, 2007.

Parameter PC 1 PC 2 PC 3 PC 4

µ̂i 0.0018 0.0043 0.0034 −0.0002
(0.0000) (0.0000) (0.0000) (0.0000)

b̂i 0.0212 0.0777 0.0910 0.0093
(0.0077) (0.0112) (0.0136) (0.0443)

Ω̂i 0.0005 0.0039 0.0016 0.0016
(0.0092) (0.0215) (0.0179) (0.0407)

Âi 0.0216 0.0446 0.0361 0.1593
(0.0069) (0.0238) (0.0210) (0.0594)

Θ̂i 0.0030 0.0162 0.0007 −0.0942
(0.0002) (0.0001) (0.0001) (0.0001)

B̂i 0.9751 0.9218 0.9350 0.6337
(0.0201) (0.0185) (0.0196) (0.0139)

(Standard errors in parentheses.)

variate GP distribution, ξ± and β±. Following the procedure described in Subsection

2.2, these parameters are estimated separately for each of the principal components,

as the exceedances can be assumed to be not only independent and identically dis-

tributed, but also orthogonal. The upper and lower tresholds, u+ and u−, are de-

termined by F (u+) = 0.90 and F (u−) = 0.10, respectively. This gives a sufficient

number of observations in the tails to render the ML estimation of the parameters

possible. The inverse of the tail index, ξ±, is significant and negative for the first

principal component, which corresponds to Weibull distribution. The other values of

ξ± are statistically not different from zero, with an exception of the upper tail of the

fourth principal component, where ξ+ is significant and positive. The scale parameter

β± has values that range between 0.52 and 0.70. Also, the asymmetry between the

upper and the lower tail implied by the parameters is apparent.
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Using formula (1) and the values in Table 6, we can plot the function Gξ,β(·)

for the distribution of excesses of zt,i over the upper and lower tresholds, u+ and

u−. Figures 1–4 show the graphs for the tail behavior of each of the four principal

components. I compare the empirical with the GP distribution function, as well as

with the normal and Student’s t distributions calibrated across the sample, using the

parameter estimates prior to January 1, 2008. Clearly, GP distribution drastically

outperforms the alternatives in explaining the tail behavior.

Table 6: Parameters of the Univariate GP Distribution

Upper- and lower-tail parameters of the univariate generalized Pareto distribution,
estimated separately for each of the standardized ARMA-GARCH orthogonal resid-
uals. The upper and lower tresholds are determined by the quantiles corresponding
to probabilities of 0.90 and 0.10, respectively. Estimation period is January 4, 1999
– December 31, 2007.

Upper tail

Parameter PC 1 PC 2 PC 3 PC 4

ξ̂+ −0.1096 0.0544 0.0058 0.1804
(0.0612) (0.0703) (0.0755) (0.0752)

β̂+ 0.6397 0.5153 0.5724 0.5386
(0.0573) (0.0497) (0.0575) (0.0536)

Lower tail

Parameter PC 1 PC 2 PC 3 PC 4

ξ̂− −0.2030 0.0570 −0.0293 0.0239
(0.0575) (0.0714) (0.0572) (0.0625)

β̂− 0.7013 0.6765 0.6379 0.6031
(0.0605) (0.0658) (0.0556) (0.0548)

(Standard errors in parentheses.)
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Figure 1: First principal component. Upper and lower tails of standardized residuals.
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Figure 2: Second principal component. Upper and lower tails of standardized residuals.
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Figure 3: Third principal component. Upper and lower tails of standardized residuals.
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Figure 4: Fourth principal component. Upper and lower tails of standardized residuals.
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Finally, I compute the one-day VaR and ES forecasts for an equally weighted

portfolio of currencies using formulas (26) and (27), for January 1, 2008. The results

are summarized in Table 7. The forecasts are given for the confidence levels of 90,

95, 99 and 99.9 percent. The values for VaR and ES are reported in percent. The

lower- (upper-) tail values are applicable for the losses associated with holding a long

(short) position in the portfolio. Evidently, the distributional asymmetry is reflected

in pronounced differences between the risk measures in the upper and lower tail.

Table 7: VaR and ES Forecasts

One-day upper- and lower-tail VaR and ES forecasts for January 1, 2008, for an
equally weighted portfolio of currencies and for several confidence levels.

Upper tail

CL 0.90 0.95 0.99 0.999

VaR 0.5294 0.6947 1.0750 1.6101
ES 0.7284 0.8924 1.2694 1.7994

Lower tail

CL 0.90 0.95 0.99 0.999

VaR −0.4212 −0.5923 −0.9203 −1.2495
ES −0.6790 −0.8251 −1.1026 −1.3743

4 Backtesting

Any risk management model needs to be tested before we can successfully apply it

in practice. A variety of tests has been proposed to evaluate the accuracy of a VaR

model. These tests are constructed to give an assessment of adequacy of the proposed

models in predicting the size and frequency of losses. The standard backtests of VaR

models compare the VaR forecasts for a given horizon with the actual portfolio losses.

In its simplest form, the backtesting procedure consists of calculating the absolute
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or relative number of times that the actual portfolio returns fall outside the VaR

estimate, and comparing that number to the confidence level used.

Model backtesting is also important for financial institutions that are subjected

to regulatory requirements. Since the late 1990s, regulatory guidelines require that

banks with substantial trading activity have to set aside capital to insure against

extreme portfolio losses. The size of the set-aside, or market risk capital requirement,

is directly related to a measure of portfolio risk. In most of developed markets, the

present regulatory framework follows the recommendations of Basel II, the second of

the accords issued by the Basel Committee on Banking Supervision. The purpose

of Basel II (initially published in June 2004) and its subsequent amendments was to

create an international standard that can be used by national banking regulators.

Currently, there are two general methodologies for assessment of market risk capital

requirements under Basel II. The first one is the so-called Standardized Approach

(SA), and is based on a set of simple rules on how to calculate minimum capital

requirements using basic cross-sectional information about the assets in the bank’s

trading book. The more advanced approach is the Internal Models Method (IMM),

which is based on VaR, and – being more precise – typically yields lower capital

requirements. Specifically, the minimum capital requirement under IMM is defined

as

MCRt := max
{

VaRt, (M + Pt)VaR
}

+ SRCt,

where VaRt is the ten-days-ahead VaR forecast at 99 percent confidence level, VaR

is the average of these forecasts over the past 60 trading days, M is a multiplication

factor set by national regulators (usually equal to 3), Pt is the penalty associated with

the backtesting results, while SRCt is the specific risk capital charge. The penalty Pt

is determined by classifying the number of violations I of one-day 99-percent VaR in

the previous 250 trading days into three distinct categories:
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• Pt = 0, if I ≤ 4 (green zone);

• Pt = (I − 4)/5, if 5 ≤ I ≤ 9 (yellow zone);

• Pt = 1, if 10 ≤ I (red zone).

Hence, a VaR model with more violations leads to a greater capital requirement.

The Basel II ”traffic-light” approach to backtesting represents the only assessment

of VaR accuracy prescribed in the current regulatory framework. Although its simple

implementation is suitable for informational purposes, this approach merely counts

the breaches of the 99-percent confidence level and fails to discard any model that,

for example, overestimates the risk, or performs poorly when compared to other con-

fidence levels. The ability of a backtest to discard all the models that systematically

overstate as well as understate the risk is known as the unconditional coverage prop-

erty. Christoffersen (1998) points out that the problem of determining the accuracy

of a VaR model can be reduced to the problem of determining whether the sequence

of breach counts satisfies both the unconditional coverage and independence. The

latter property refers to intuition that the previous history of VaR violations must

not convey any information about the future violations.

Some of the earliest VaR backtests proposed in the literature focused on the prop-

erty of unconditional coverage, that is, whether or not the reported VaR is violated

more or less than α percent of the time, where 1− α is the confidence level. Kupiec

(1995), for example, proposed a proportion of failures (POF) test that examines how

many times VaR forecasts are violated over a given span of time. If the number of

violations differs significantly from α times the size of the sample, then the accuracy

of the underlying risk model is called into question. Using a sample of T observations,
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Kupiec (1995) test statistic takes the form,

POF := 2 ln

[(
1− α̂
1− α

)T−I(α)(
α̂

α

)I(α)
]
, (30)

where

α̂ :=
I(α)

T
,

I(α) :=
T∑
t=1

It(α),

where It(α) is an indicator function taking the value one if the actual return at t

breaches the forecasted value of VaR for the confidence level determined by α, and

zero if it stays within the VaR bounds. Hence, if the proportion of VaR violations,

α̂, is exactly equal to α then the POF statistic takes the value zero, indicating no

evidence of any inadequacy in the underlying VaR measure. As the proportion of

VaR violations differs from α, the POF statistic grows, indicating that the proposed

VaR measure either systematically understates or overstates the underlying level of

risk. The POF statistic given by (30) is a likelihood ratio and hence converges in

distribution to a χ2 with I(α) degrees of freedom.

Figure 5 shows the comparison between actual returns (dots) and VaR forecasts

(continuous lines) for different confidence levels for an equally weighted portfolio of

four currencies, for the period January 1, 2004 – September 30, 2008. The forecasts are

computed using the formula (26), both for the lower and the upper tail of the return

distribution in order to take into account losses both of a long and a short position,

respectively. Table 8 summarizes the backtesting results, comparing the expected

number of violations with the actual ones. The actual violations were compared

across different multivariate models (EVT, conditional normality and conditional t-
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distribution), as well as the univariate historical simulation. The multivariate normal

and t models applied here follow the orthogonal GARCH approach of Alexander

(2001). In other words, these forecasts were also obtained using the ARMA(1,0)–

GJR-GARCH(1,1) filtering of principal components, except that the estimation of

the covariance matrices was performed across the entire sample (thereby including

both the center and the tails of the distribution) via ML method assuming normally-

or t-distributed conditional residuals. The number of violations by quantiles clearly

shows that HS markedly deviates from the expected values. The multivariate normal

underestimates, while the multivariate t model overestimates the tail risk. At the

same time, the multivariate EVT appears to yield much better forecasts. This is also

verified formally by means of the Kupiec (1995) test, see Table 9. Clearly, all the

models give predictions that are within statistically significant bounds for confidence

levels of 90 and 95 percent, except for the normal model in the upper tail at 95 percent

confidence level. However, the HS model performs poorly at all higher confidence

levels, the multivariate t at 99 percent confidence, while the multivariate normal falls

short in explaining the upper-tail returns above 99 percent level, and both the upper-

and lower-tail extreme returns above 99.9 percent level. On the other hand, VaR

forecasts based on the proposed multivariate EVT method violate the corresponding

confidence bounds by a number of times that is not statistically different from the

expected one. The only exception is perhaps the extreme confidence interval of 99.9

percent, where we observe no violations in the upper tail and one violation in the lower

tail, compared to the expectation of 1.239, so for an appropriate sense of statistical

significance at these extreme return regions we might need an even longer backtesting

sample.
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Table 8: VaR Backtesting: Violations by Quantiles

Expected versus the actual number of violations obtained by several models for an
equally weighted portfolio of currencies, between January 1, 2004 and September 30,
2008 (a total of 1239 observations).

Upper tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 109 56 12 0
Normal 144 89 31 16
t 121 49 11 0
HS 235 166 70 21

Expected 123.9 61.95 12.39 1.239

Lower tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 88 48 9 1
Normal 118 67 19 8
t 86 40 7 0
HS 219 142 54 28

Expected 123.9 61.95 12.39 1.239

(p-values in parentheses.)
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Table 9: VaR Backtesting: Kupiec Test

The Kupiec (1995) POF test statistics and p-values obtained by several models for
an equally weighted portfolio of currencies, between January 1, 2004 and September
30, 2008 (a total of 1239 observations).

Upper tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 2.0665 0.6207 0.0125 2.4792
(< 10−4) (< 10−4) (< 10−4) −−

Normal 3.4620 11.0174 19.9238 52.5198
(< 10−4) (0.4564) (0.0626) (∼ 1.0)

t 0.0759 3.0602 0.1637 2.4792
(< 10−4) (< 10−4) (0.2022) −−

HS 90.1083 128.6208 129.9539 79.6643
(< 10−4) (0.0142) (∼ 1.0) (∼ 1.0)

Lower tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 12.7273 3.5725 1.0354 0.0494
(< 10−4) (< 10−4) (0.0006) (0.1760)

Normal 0.3167 0.4226 3.0626 16.3572
(< 10−4) (< 10−4) (< 10−4) (0.9625)

t 14.2719 9.3110 2.8099 2.4792
(< 10−4) (< 10−4) (0.0980) −−

HS 67.6349 81.0498 77.1940 121.6632
(< 10−4) (< 10−4) (0.9791) (∼ 1.0)

(p-values in parentheses.)
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By examining a variety of different quantiles instead of a single one, some types of

backtests can detect violations of the independence across a range of different VaR

levels, while satisfying the unconditional coverage property. A variety of such tests

has been proposed during the past decade, and Campbell (2005) gives a good review

of these and other backtesting methods. An example of such a test is Pearson’s test

for goodness of fit. This test is based upon the number of observed violations at a

variety of different VaR levels, separated into bins on the unit interval. The Pearson’s

test statistic is given by

Q :=
K∑
k=1

(
Nobs
k −N exp

k

)2
N exp
k

, (31)

where Nobs
k and N exp

k are, respectively, the observed and the expected number of

violations in the k-th bin. The Q statistic converges in distribution to a χ2 with

K − 1 degrees of freedom, K being the number of bins. The results of the Pearson’s

test for the currency portfolio are summarized in Table 10, for the set of bins given

by α ∈ [0.00, 0.001)∪ [0.001, 0.01)∪ [0.01, 0.05)∪ [0.05, 0.10)∪ [0.10, 1.00]. They show

that models based on conditionally normal or t-distributed residuals, as well as the

HS model, can be rejected in favor of the proposed multivariate EVT alternative.
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Table 10: VaR Backtesting: Pearson’s Test

Pearson’s test statistics and p-values obtained using VaR forecasts for an equally
weighted portfolio of currencies between January 1, 2004 and September 30, 2008
(a total of 1239 observations). The partition of the unit interval used was α ∈
[0.00, 0.001) ∪ [0.001, 0.01) ∪ [0.01, 0.05) ∪ [0.05, 0.10) ∪ [0.10, 1.00].

Method Lower tail Upper tail

EVT 0.4170 1.3142
(0.0189) (0.1410)

Normal 38.5252 7.5773
(∼ 1.0) (0.8917)

t 2.2298 2.0934
(0.3064) (0.2814)

HS 123.1067 146.7974
(∼ 1.0) (∼ 1.0)

(p-values in parentheses.)
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5 Conclusion

This paper develops an efficient procedure for estimation of Value at Risk and ex-

pected shortfall based on a multivariate extreme value theory approach. The method

is based on separate estimations of the univariate EVT model. It works with a set of

orthogonal conditional residuals, obtained from the principal components of the joint

return series. Autocorrelation, heteroskedasticity and asymmetry that are inherent

in the original return series can be removed by assuming an ARMA process for the

conditional mean and an asymmetric GARCH process for the conditional variance

of the principal components. In this way, we can obtain a set of independent and

identically distributed random variables, which is a prerequisite for any univariate

EVT approach. The tails of the univariate distributions are modeled by a generalized

Pareto distribution of peeks over treshold, while the interiors are fitted with an empir-

ical distribution function. Furthermore, the method can be free of any unnecessary

distributional assumption since the estimation of the ARMA-GARCH parameters

can be performed via a generalized method of moments. Also, the method is free of

estimation of a joint multivariate distribution, which would require a technique such

as copula approach with simulations.

As an illustration, the method is applied to a sequence of daily interbank spot

exchange rates of Euro, British Pound, Japanese Yen and Swiss Franc with respect to

the U.S. Dollar. The forecasts of VaR and ES are backtested through a comparison

with the actual losses over an out-of-the-sample period of four years and three quar-

ters. The backtesting results indicate that the proposed multivariate EVT method

performs well in forecasting the risk of a portfolio of four currencies. It certainly gives

more precise estimate of VaR than the usual methods based on conditional normality,

conditional t-distribution or historical simulation, while having the efficiency of an
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orthogonal GARCH method.
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